Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 24.5
(a) Moles of C₆H₁₂O₆

(b) Moles of CO₂

(c) Volume of CO₂
We can use the Ideal Gas Law.
pV = nRT
Data:
p = 0.960 atm
n = 0.8159 mol
T = 37 °C
(i) Convert the temperature to kelvins
T = (37 + 273.15) K= 310.15 K
(ii) Calculate the volume

Families are another names for the columns
It is the boilimg point now aa
Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
1 carot = 0.2 grams
1.5 carot = 0.3 grams.
1 mol of Carbon = 12 grams
x mol = 0.3 grams
0.3 * 1 = 12 x
x = 0.3/12
x = 0.025 mol
1 mol of Carbon is 6.02 * 10^23 atoms
0.025 mol of carbon is x
1/0.025 = 6.02*10^23 * /x
x = 0.025 * 6.02 * 10^23
x = 1.5 * 10^22 atoms of carbon.