1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
2 years ago
6

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

Mathematics
2 answers:
tankabanditka [31]2 years ago
7 0

\sf\underline{\underline{Question:}}

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

$\sf\underline{\underline{Solution:}}$

  • $\sf\bold\purple{||100||}$

$\space$

$\sf\underline\bold\red{||Step-by-Step||}$

$\sf\bold{Given:}$

  • $\sf\bold{S6=36}$
  • $\sf\bold{S16=255}$

$\space$

$\sf\bold{To\:find:}$

  • $\sf\bold{The \: sum\:of\:the\:first\:ten\:numbers}$

$\space$

$\sf\bold{Formula\:we\:are\:using:}$

$\implies$ $\sf{ Sn=}$ $\sf\dfrac{N}{2}$ $\sf\small{[2a+(n-1)d]}$

$\space$

$\sf\bold{Substituting\:the\:values:}$

→ $\sf{S6=}$ $\sf\dfrac{6}{2}$ $\sf\small{[2a+(6-1)d]}$

→ $\sf{36 = 3[2a+(6-1)d]}$

→$\sf{12=[2a+5d]}$ $\sf\bold\purple{(First \: equation)}$

$\space$

$\sf\bold{Again,Substituting \: the\:values:}$

→ $\sf{S16}$ $\sf\dfrac{16}{2}$ $\sf\small{[2a+(16-1)d]}$

→ $\sf{255=8[2a + (16-1)d]}$

:: $\sf\dfrac{255}{8}$ $\sf\small{=31.89=32}$

→ $\sf{32=[2a+15d]}$ $\sf\bold\purple{(Second\:equation)}$

$\space$

$\sf\bold{Now,Solve \: equation \: 1 \:and \:2:}$

→ $\sf{10=20}$

→ $\sf{d=}$ $\sf\dfrac{20}{10}$ $\sf{=2}$

$\space$

$\sf\bold{Putting \: d=2\: in \:equation - 1:}$

→ $\sf{12=2a+5\times 2}$

→ $\sf{a = 1}$

$\space$

$\sf\bold{All\:of\:the\:above\:eq\: In \: S10\:formula:}$

$\mapsto$ $\sf{S10=}$ $\sf\dfrac{10}{2}$ $\sf\small{[2\times1+(10-1)d]}$

$\mapsto$ $\sf{5(2\times1+9\times2)}$

$\mapsto$ $\sf\bold\purple{5(2+18)=100}$

$\space$

$\sf\small\red{||Hence , the \: sum\: of \: the \: first\:10\: terms\: is\:100||}$

_____________________________

Cloud [144]2 years ago
4 0

Answer:

100

Step-by-step explanation:

We have the sum of first n terms of an AP,

Sn = n/2 [2a+(n−1)d]

Given,

36= 6/2 [2a+(6−1)d]

12=2a+5d ---------(1)

256= 16/2 [2a+(16−1)d]

32=2a+15d ---------(2)

Subtracting, (1) from (2)

32−12=2a+15d−(2a+5d)

20=10d ⟹d=2

Substituting for d in (1),

12=2a+5(2)=2(a+5)

6=a+5 ⟹a=1

∴ The sum of first 10 terms of an AP,

S10 = 10/2 [2(1)+(10−1)2]

S10 =5[2+18]

S10 =100

This is the sum of the first 10 terms.

Hope it will help.

You might be interested in
A new shopping mall records 120 total shoppers on their first day of business. Each day after that, the number of shoppers is 10
Iteru [2.4K]

Answer:

1,139\ shoppers

Step-by-step explanation:

we know that

In this problem we have a exponential function of the form

y=a(b)^{x}

where

a is the initial value or y-intercept

b is the base of the exponential function

r is the rate in decimal form

b=(1+r)

In this problem we have

x ----> the number of days

y ----> the number of shoppers

a=120

r=10%=10/100=0.10

b=1+0.10=1.10

substitute the values

y=120(1.10)^{x}

First day

y=120

Second day

For x=1 day

substitute the value of x in the equation and solve for y

y=120(1.10)^{1}=132

Third day

For x=2 days

y=120(1.10)^{2}=145

Fourth day

For x=3 days

y=120(1.10)^{3}=160

Fifth day

For x=4 days

y=120(1.10)^{4}=176

Sixth day

For x=5 days

y=120(1.10)^{5}=193

Seventh day

For x=6 days

y=120(1.10)^{6}=213

Adds the numbers

120+132+145+160+176+193+213=1,139

3 0
3 years ago
Read 2 more answers
1. 7p - 6pc + 3c - 2 Number of terms: Coefficients: Constant terms:​
Andreas93 [3]

Step-by-step explanation:

Given:

7p - 6pc + 3c - 2

Find:

Number of terms

Coefficients

Constant terms

Computation:

Number of terms = 4

Coefficients = (7, -6, 3)

Constant terms = -2

8 0
2 years ago
What is the next term in the following series 1,1,2,3,5,8,_
Bezzdna [24]
This is the famous Fibonacci frequence. it's by adding the 2 terms in front. like 2 + 3, so the next term is 5. and 5+ 8, the next term is 13.
4 0
3 years ago
Solve these equations for x.<br> 1. 12+6x = 5-2<br> 2. X-4 = {(6x – 54)<br> 3. – (3x – 12) = 9x – 4
Fynjy0 [20]
X for the equations are:

1.-1.5
2.10
3.1.333
8 0
3 years ago
Round 8,937.2546 to the nearest<br> hundred.
xeze [42]

Answer:

8,900

Step-by-step explanation:

Given Number: 8,937.2546

Determine the two consecutive multiples of 100 that bracket 8,937.2546

8,937.2546 is between 8,900 and 9,000

8,950 is the midpoint between 8,900 and 9,000

As illustrated on the number line, 8,937.2546 is less than the midpoint (8,950)

Therefore, 8,937.2546 rounded to the nearest hundred = 8,900

6 0
1 year ago
Other questions:
  • Rewrite the following exponential expressions as equivalent radical expressions. If the number is rational, write it without rad
    15·1 answer
  • 8.1 liters to meters
    14·1 answer
  • A community that has progressed so much that it is stable and balanced is called a(n) _______ community.
    10·2 answers
  • In the diagram below, what is the approximate length of the minor arc AB?
    11·2 answers
  • 1- un tinaco se llena en 8 horas utilizando 4 llaves. en cuanto tiempo se llenara con 7 llaves?
    15·1 answer
  • What is this answer???
    15·1 answer
  • Ms. Ringer asked her class, "What are the favorite colors of the students in our school?" Which student correctly describes Ms.
    8·1 answer
  • When creating a histogram, the first recorded scale is 0 to 10. What should the second scale indicate?
    5·1 answer
  • Which figure can be formed from the net NEED HELP ASAP
    8·1 answer
  • At Garland School,
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!