1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
2 years ago
6

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

Mathematics
2 answers:
tankabanditka [31]2 years ago
7 0

\sf\underline{\underline{Question:}}

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

$\sf\underline{\underline{Solution:}}$

  • $\sf\bold\purple{||100||}$

$\space$

$\sf\underline\bold\red{||Step-by-Step||}$

$\sf\bold{Given:}$

  • $\sf\bold{S6=36}$
  • $\sf\bold{S16=255}$

$\space$

$\sf\bold{To\:find:}$

  • $\sf\bold{The \: sum\:of\:the\:first\:ten\:numbers}$

$\space$

$\sf\bold{Formula\:we\:are\:using:}$

$\implies$ $\sf{ Sn=}$ $\sf\dfrac{N}{2}$ $\sf\small{[2a+(n-1)d]}$

$\space$

$\sf\bold{Substituting\:the\:values:}$

→ $\sf{S6=}$ $\sf\dfrac{6}{2}$ $\sf\small{[2a+(6-1)d]}$

→ $\sf{36 = 3[2a+(6-1)d]}$

→$\sf{12=[2a+5d]}$ $\sf\bold\purple{(First \: equation)}$

$\space$

$\sf\bold{Again,Substituting \: the\:values:}$

→ $\sf{S16}$ $\sf\dfrac{16}{2}$ $\sf\small{[2a+(16-1)d]}$

→ $\sf{255=8[2a + (16-1)d]}$

:: $\sf\dfrac{255}{8}$ $\sf\small{=31.89=32}$

→ $\sf{32=[2a+15d]}$ $\sf\bold\purple{(Second\:equation)}$

$\space$

$\sf\bold{Now,Solve \: equation \: 1 \:and \:2:}$

→ $\sf{10=20}$

→ $\sf{d=}$ $\sf\dfrac{20}{10}$ $\sf{=2}$

$\space$

$\sf\bold{Putting \: d=2\: in \:equation - 1:}$

→ $\sf{12=2a+5\times 2}$

→ $\sf{a = 1}$

$\space$

$\sf\bold{All\:of\:the\:above\:eq\: In \: S10\:formula:}$

$\mapsto$ $\sf{S10=}$ $\sf\dfrac{10}{2}$ $\sf\small{[2\times1+(10-1)d]}$

$\mapsto$ $\sf{5(2\times1+9\times2)}$

$\mapsto$ $\sf\bold\purple{5(2+18)=100}$

$\space$

$\sf\small\red{||Hence , the \: sum\: of \: the \: first\:10\: terms\: is\:100||}$

_____________________________

Cloud [144]2 years ago
4 0

Answer:

100

Step-by-step explanation:

We have the sum of first n terms of an AP,

Sn = n/2 [2a+(n−1)d]

Given,

36= 6/2 [2a+(6−1)d]

12=2a+5d ---------(1)

256= 16/2 [2a+(16−1)d]

32=2a+15d ---------(2)

Subtracting, (1) from (2)

32−12=2a+15d−(2a+5d)

20=10d ⟹d=2

Substituting for d in (1),

12=2a+5(2)=2(a+5)

6=a+5 ⟹a=1

∴ The sum of first 10 terms of an AP,

S10 = 10/2 [2(1)+(10−1)2]

S10 =5[2+18]

S10 =100

This is the sum of the first 10 terms.

Hope it will help.

You might be interested in
To solve the equation X - 62 = 123, you would ?
Ratling [72]
X-62=123
+62 +62
_________
x=185
you need to add a positive 62 from each side so -62+62=0 and 123+62=185
therefore, x=185
:Done! hope this helps!
6 0
3 years ago
110$ for 16ft find the unit rate ​
Neporo4naja [7]

Answer:

6.875 dollars per feet

Step-by-step explanation:

110/16

6.875

8 0
3 years ago
The next train will arrive in 32 minutes and 30 seconds. In how many seconds will the next train arrive? Enter your answer in th
34kurt

It will arrive in 1950 seconds

6 0
3 years ago
Read 2 more answers
PLEASE HELP ASAP
neonofarm [45]

Answer:

9 Quarters

8 Dimes

3 Nickels

Step-by-step explanation:

We let the number of quarters be q

number of dimes be d

and

number of nickels be n

Since quarters are worth 0.25, dimes are worth 0.10 and nickels are worth 0.05 and total worth is 3.20, we can write an equation as:

0.25q + 0.10d + 0.05n = 3.20

Next,

3 times as many quarters as Nickels, we can write:

q = 3n

and

5 more dimes than nickel, we can write:

d = n + 5

Substituting these last 2 equations in the first and solving for n gives us:

0.25q + 0.10d + 0.05n = 3.20

0.25(3n) + 0.10(n+5) + 0.05n = 3.20

0.75n + 0.10n +0.5 + 0.05n = 3.20

0.9n = 2.70

n = 2.70/0.9 = 3

n = 3

We know q = 3n, so

q = 3(3) = 9

Also, we know d = n + 5, which means:

d = 3 + 5 = 8

Thus,

There are:

9 Quarters

8 Dimes

3 Nickels

5 0
3 years ago
Write an expression that represents the product of a variable and a negative number
lbvjy [14]
-6x because this expression represents the product of a negative number (-6) and a variable (x).
4 0
3 years ago
Other questions:
  • How does dividing the coins into equal groups help solve the problem
    9·1 answer
  • What is 78% of 50?????
    6·2 answers
  • Find the value of x.<br> (7x - 1)º<br> (6x - 1)º
    5·1 answer
  • What are the period and phase shift for f(x) = 3 tan(4x + π)?
    13·1 answer
  • One gym charges a $50 sign up fee and $65 per month. Another gun charges a $90 sign up fee and $45 per month. Foe what number of
    5·2 answers
  • The question is there
    7·2 answers
  • How do I simplify 0.83​
    6·1 answer
  • PLS HELP DUE SOON: (retest) will give brainliest &lt;3
    12·2 answers
  • Can soeone answer this asap pleasee?
    11·2 answers
  • Please help me with this math problem!! Will give brainliest!! :)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!