Answer:


Step-by-step explanation:
Given

Solving (a):
Find k
To solve for k, we use the definition of joint probability function:

Where

Substitute values for the interval of x and y respectively
So, we have:

Isolate k

Integrate y, leave x:
![k \int\limits^2_{0} y {dx} \, [0,x/2]= 1](https://tex.z-dn.net/?f=k%20%5Cint%5Climits%5E2_%7B0%7D%20y%20%7Bdx%7D%20%5C%2C%20%5B0%2Cx%2F2%5D%3D%201)
Substitute 0 and x/2 for y


Integrate x
![k * \frac{x^2}{2*2} [0,2]= 1](https://tex.z-dn.net/?f=k%20%2A%20%5Cfrac%7Bx%5E2%7D%7B2%2A2%7D%20%5B0%2C2%5D%3D%201)
![k * \frac{x^2}{4} [0,2]= 1](https://tex.z-dn.net/?f=k%20%2A%20%5Cfrac%7Bx%5E2%7D%7B4%7D%20%5B0%2C2%5D%3D%201)
Substitute 0 and 2 for x
![k *[ \frac{2^2}{4} - \frac{0^2}{4} ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%20%5Cfrac%7B2%5E2%7D%7B4%7D%20-%20%5Cfrac%7B0%5E2%7D%7B4%7D%20%5D%3D%201)
![k *[ \frac{4}{4} - \frac{0}{4} ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%20%5Cfrac%7B4%7D%7B4%7D%20-%20%5Cfrac%7B0%7D%7B4%7D%20%5D%3D%201)
![k *[ 1-0 ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%201-0%20%5D%3D%201)
![k *[ 1]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%201%5D%3D%201)

Solving (b): 
We have:

Where 

To find
, we use:

So, we have:



Integrate x leave y
![P(x > 3y) = \int\limits^2_0 x [0,y/3]dy](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cint%5Climits%5E2_0%20%20x%20%5B0%2Cy%2F3%5Ddy)
Substitute 0 and y/3 for x
![P(x > 3y) = \int\limits^2_0 [y/3 - 0]dy](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cint%5Climits%5E2_0%20%20%5By%2F3%20-%200%5Ddy)

Integrate
![P(x > 3y) = \frac{y^2}{2*3} [0,2]](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cfrac%7By%5E2%7D%7B2%2A3%7D%20%5B0%2C2%5D)
![P(x > 3y) = \frac{y^2}{6} [0,2]\\](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cfrac%7By%5E2%7D%7B6%7D%20%5B0%2C2%5D%5C%5C)
Substitute 0 and 2 for y




The answer is 1A definitely
The area of the blanket is 4.05 sq. meters.
Answer:
light blue
bbbbbbbbccccc i said and brainly wont just let me type the answer if im wrong sorry
Answer:
444,444
Step-by-step explanation:
total amount=737373
jerry=292929
Brandon=unknown
To figure the amount of video games Brandon has, we have to subtract the amount of both he and his friend altogether amount with Jerry's current amount of video games.
737,373-292,929=444,444
So, by subtracting the two, the answer would be 444,444.
Brandons total amount of video games:444,444