Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
Answer: The result is presented in proportion which gives a clearer understanding and accurate result.
Explanation: Percentage change in mass is the proportion of the initial mass of a substance changed after sometime. The results is presented as a percentage making it more accurate and can help to give future reference to weight calculations.
Change is Mass is the mass of a substance left after sometime mostly given in grams. It is not as accurate as percentage change in mass. It is generally better to show results in percentage change in mass as it gives a better understanding of what mass of a substance was lost after a given period or after application of energy like Heat or increased temperature.
The sun is made up of two main elements, hydrogen and helium.
- Hydrogen makes up about 92% of all of the atoms in the sun while helium makes up about 7.8%.
- Oxygen, carbon, neon and nitrogen make up most of the remaining 0.2%.
Answer:
The calcium concentration must be greater outside the cell than inside the cell.
Explanation:
My previous answer was deleted from the explanation I provided from another website.