Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
Step-by-step explanation:
2(10)+2(x+4)
20 + 2x + 8
20 +8 +2x
28+2x
I think its supposed to be divide so i think C. would be the answer
We are given :
The ratio of orange juice to pineapple juice in tropical treat punch = 4:3 or 4/3.
Number of oz of orange juice = 64 oz.
Let us assume number of oz pineapple juice does he need = p.
We can setup an proportion:
64 : p = 4 : 3

On cross multiplication we get
64 × 3 = 4 × p
192 = 4p
Dividing both sides by 4, we get
p = 48.
<h3>Therefore, he needs 48 oz of pineapple juice.</h3>
<h3>
Answer: 8/25</h3>
=======================================================
Explanation:
In a standard deck, there are 52 cards.
If this deck is missing the queen of hearts and 2 of clubs, then we really have 52-2 = 50 cards in the deck.
There are 4 aces and 13 spades. Those values add to 4+13 = 17, but we need to subtract off 1 to account for the ace of spades counted twice. We have 17-1 = 16 cards that are either an ace, a spade, or both.
Or you can think of it like saying 13 spades + 1 ace of hearts + 1 ace of diamonds + 1 ace of clubs = 16 cards total.
-----------------
The event space has A = 16 cards in it, while the sample space has B = 50 cards.
The probability we're after is A/B = 16/50 = 8/25