Answer:
3 can
Step-by-step explanation:
there
<h2>
The area of a triangle is =54 square units</h2><h2>
The perpendicular distance from B to AC is = 
</h2>
Step-by-step explanation:
Given a triangle ABC with vertices A(2,1),B(12,2) and C(12,8)

The area of a triangle is= ![\frac{1}{2} [x_1(y_2-y_3) +x_2 (y_3- y_1)+x_3(y_1-y_2)]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Bx_1%28y_2-y_3%29%20%2Bx_2%20%28y_3-%20y_1%29%2Bx_3%28y_1-y_2%29%5D)
=![|\frac{1}{2} [2(2-8+12(8-1)+12(1-2)]|](https://tex.z-dn.net/?f=%7C%5Cfrac%7B1%7D%7B2%7D%20%5B2%282-8%2B12%288-1%29%2B12%281-2%29%5D%7C)
=
= 54 square units
The length of AC = 
= 
=
units
Let the perpendicular distance from B to AC be = x
According To Problem

⇔
units
Therefore the perpendicular distance from B to AC is = 
Answer:
on the first triangle it is equal, 1.5 on the left of it is half of 3 on the right triangle, 5 on the left is half of 10 on the right triangle. so the answer is 8 becuase each side on the left is 2 times the side on the right
Step-by-step explanation:
hope this helps
Answer:
(i) The length of AC is 32 units, (ii) The length of BC is 51 units.
Step-by-step explanation:
(i) Let suppose that AB and BC are collinear to each other, that is, that both segments are contained in the same line. Algebraically, it can be translated into this identity:

If we know that
and
, then:


The length of AC is 32 units.
(ii) Let suppose that AB and AC are collinear to each other, that is, that both segments are contained in the same line. Algebraically, it can be translated into this identity:


If we know that
and
, then:


The length of BC is 51 units.
Answer: 5 pounds
Step-by-step explanation: because you have to do 0.45 times 5 = 2.25 and then you know that 1.29 times 3 = 3.87 so you add 3.87 + 2.25 and u get 6.12