The rest of the question is the attached figure.
============================================
Δ AYW a right triangle at Y ⇒⇒⇒ ∴ WA² = AY² + YW²
And AY = YB ⇒⇒⇒ ∴ WA² = YB² + YW² → (1)
Δ BYW a right triangle at Y ⇒⇒⇒ ∴ WB² = BY² + YW² → (2)
From (1) , (2) ⇒⇒⇒ ∴ WA = WB →→ (3)
Δ CXW a right triangle at Y ⇒⇒⇒ ∴ WC² = CX² + XW²
And CX = XB ⇒⇒⇒ ∴ WC² = XB² + XW² → (4)
Δ BXW a right triangle at Y ⇒⇒⇒ ∴ WB² = XB² + XW² → (5)
From (4) , (5) ⇒⇒⇒ ∴ WC = WB →→ (6)
From (3) , (6)
WA = WB = WC
given ⇒⇒⇒ WA = 5x – 8 and WC = 3x + 2
∴ <span> 5x – 8 = 3x + 2</span>
Solve for x ⇒⇒⇒ ∴ x = 5
∴ WB = WA = WC = 3*5 + 2 = 17
The correct answer is option D. WB = 17
Without context, d^3 + e^3 is equal to the equation you just showed.
Answer: 23 in
Step-by-Step Explanation:
Height (h) = 18 in
Base (b) = ?
Area (A) = 207 sq. in
We know,
Area of a Triangle = 1/2 * b * h
Therefore,
1/2 * b * h = 207
1/2 * b * 18 = 207
b * 9 = 207
9b = 207
b = 207/9
=> b = 23
Base (b) = 23 in
Place a point on your paper and then use a compass to construct a circle.