Answer:
Cofilin binds to older actin filaments
Explanation:
Microfilaments (also called actin filaments) are a class of protein filament common to all eukaryotic cells, which consist of two strands of subunits of the protein actin. Microfilaments form part of the cell's cytoskeleton and interact with the protein myosin in order to allow the movement of the cell. Within the cell, actin may show two different forms: monomeric G-actin and polymeric F-actin filaments. Microfilaments provide shape to the cell because these filaments can depolymerize (disassemble) and polymerize (assembly) quickly, thereby allowing the cell to change its shape. During the polymerization process, the ATP that is bound to G-actin is hydrolyzed to ADP, which is bound to F-actin. ATP-actin subunits are present at the barbed ends of the filaments, and cleavage of the ATP molecules produces highly stable filaments bound to ADP. In consequence, it is expected that cofilin binds preferentially to highly stable (older) filaments ADP-actin filaments instead of ATP-actin filaments.
This is true I looked up in the science dictionary.
Answer:
The importance of the AUG and UGA bases lies in the fact that the first one is a start codon and the second one is a stop codon, respectively (option a).
Explanation:
Codons or triplets are sequences of three nitrogenous bases, in the mRNA, that determine the synthesis of a specific amino acid.
- <em>AUG </em><em>is called the </em><em>initiation or start codon</em><em>, and is usually at the beginning of a peptide synthesis, in addition to encoding the amino acid methionine.
</em>
- <em>UGA</em><em> is a</em><em> termination or stop codon</em><em> found at the end of a petid chain when it is complete. UAA and UAG codons are also STOP or termination codons and, together with UGA, do not code for amino acids.</em>
The biological importance of start and stop codons is to initiate the synthesis of a protein and to stop the addition of amino acids when their size is adequate.
Answer:
Explanation:
This graph shows the harbor seal population in the gulf of Maine for a twenty year period. A population of seals with unlimited
resources will continue to grow exponentially as shown in the graph above. What are some density-dependent limiting factors that
would prevent continued exponential growth? Choose ALL that apply.
es )