Answer:
z (min) = 705
x₁ = 10
x₂ = 9
Step-by-step explanation:
Let´s call x₁ quantity of food I ( in ou ) and x₂ quantity of food II ( in ou)
units of vit. C units of vit.E Cholesterol by ou
x₁ 32 9 48
x₂ 16 18 25
Objective function z
z = 48*x₁ + 25*x₂ To minimize
Subject to:
1.-Total units of vit. C at least 464
32*x₁ + 16*x₂ ≥ 464
2.- Total units of vit. E at least 252
9*x₁ + 18*x₂ ≥ 252
3.- Quantity of ou per day
x₁ + x₂ ≤ 35
General constraints x₁ ≥ 0 x₂ ≥ 0
Using the on-line simplex method solver (AtoZmaths) and after three iterations the solution is:
z (min) = 705
x₁ = 10
x₂ = 9
Answer:
C
Step-by-step explanation:
5+2y+3z=5+3z+2yA
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
5+3z+2yA=5+2y+3z
Resta 5 en los dos lados.
3z+2yA=5+2y+3z−5
Resta 5 de 5 para obtener 0.
3z+2yA=2y+3z
Resta 3z en los dos lados.
2yA=2y+3z−3z
Combina 3z y −3z para obtener 0.
2yA=2y
Anula 2 en ambos lados.
yA=y
Divide los dos lados por y.
y
yA
=
y
y
Al dividir por y, se deshace la multiplicación por y.
A=
y
y
Divide y por y.
A=1
Answer:
I believe the answer is- The mean and MAD can accurately describe the "typical" value in the symmetric data set.
Step-by-step explanation:
The other answers don't make sense because the mean and MAD are being used for symmetrical distributions and asymmetrical means uneven distributions.
Answer:
Answer is A. ">"
Step-by-step explanation: