Answer:
<h2>5 cm</h2>
Step-by-step explanation:
The triangles are similar. Therefore the corresponding sides are in proportion:
<em>cross multiply</em>

<em>divide both sides by 32</em>

37 boxes of tiles,because you minus 1440-1033=407 thenyou keep adding in eleven and i got 11*37=407 so thats your answer 37.
Our current list has 11!/2!11!/2! arrangements which we must divide into equivalence classes just as before, only this time the classes contain arrangements where only the two As are arranged, following this logic requires us to divide by arrangement of the 2 As giving (11!/2!)/2!=11!/(2!2)(11!/2!)/2!=11!/(2!2).
Repeating the process one last time for equivalence classes for arrangements of only T's leads us to divide the list once again by 2
Answer:
The answer is C. "Type 1 and Type 2 plants have somewhat similar height distributions." :)
Do great on the test! ~
Answer:
Claim 2
Step-by-step explanation:
The Inscribed Angle Theorem* tells you ...
... ∠RPQ = 1/2·∠ROQ
The multiplication property of equality tells you that multiplying both sides of this equation by 2 does not change the equality relationship.
... 2·∠RPQ = ∠ROQ
The symmetric property of equality says you can rearrange this to ...
... ∠ROQ = 2·∠RPQ . . . . the measure of ∠ROQ is twice the measure of ∠RPQ
_____
* You can prove the Inscribed Angle Theorem by drawing diameter POX and considering the relationship of angles XOQ and OPQ. The same consideration should be applied to angles XOR and OPR. In each case, you find the former is twice the latter, so the sum of angles XOR and XOQ will be twice the sum of angles OPR and OPQ. That is, angle ROQ is twice angle RPQ.
You can get to the required relationship by considering the sum of angles in a triangle and the sum of linear angles. As a shortcut, you can use the fact that an external angle is the sum of opposite internal angles of a triangle. Of course, triangles OPQ and OPR are both isosceles.