Answer:
what is the lesson? abot?
Step-by-step explanation:
Answer:
Step-by-step explanation:
It is given that the length of triangle base is 26, then let ABC be the triangle and BC be the base of the triangle=26.Let DE be the parallel line to the base that divides triangle ABC into two equal area parts.
Now, Let AD=a, DB=b, DE=c, AE=d and EC=e, then
Since, triangle ABC is similar to triangle ADE, thus using basic proportions, we get



Taking the first two equalities,we get


Thus, the length of the segment between triangle legs is 
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
U-Substitution
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Identify</u>
<em>Graph the systems of equations - see attachment.</em>
Top Function: 
Bottom Function: 
Bounds of Integration: [-1.529, 1.718]
<u>Step 3: Integrate Pt. 1</u>
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [Right Integral] Integration Rule [Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

<u>Step 4: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:

- [Limits] Switch:

<u>Step 5: Integrate Pt. 3</u>
- [Integral] U-Substitution:

- [Integral] Integration Rule [Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Answer: i think it is 357
Step-by-step explanation:
Answer: 1 & 4
1.25
Step-by-step explanation: