1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
3 years ago
8

Find the value of p (2) - P(-1) in p (X) = x^2- 4x + 3​

Mathematics
1 answer:
kolbaska11 [484]3 years ago
4 0

Answer:

The answer is - 9

Step-by-step explanation:

( {2}^{2}  - 4 \times 2 + 3) - (  { - 1}^{2}  - 4 \times  - 1 + 3 \\  =  - 9

You might be interested in
Can someone help me with this question
bija089 [108]

Answer:

what is the lesson? abot?

Step-by-step explanation:

8 0
2 years ago
The length of triangle base is 26. A line, which is parallel to the base divides the triangle into two equal area parts. Find th
Yanka [14]

Answer:

Step-by-step explanation:

It is given that the length of triangle base is 26, then let ABC  be the triangle and BC be the base of the triangle=26.Let DE be the parallel line to the base that divides triangle ABC into two equal area parts.

Now, Let AD=a, DB=b, DE=c, AE=d and EC=e, then

Since,  triangle ABC is similar to triangle ADE, thus using basic proportions, we get

\frac{AD}{AB}=\frac{DE}{BC}=\frac{AE}{AC}

\frac{AD}{AD+DB}=\frac{DE}{BC}=\frac{AE}{AE+EC}

\frac{a}{a+b}=\frac{c}{26}=\frac{d}{d+e}

Taking the first two equalities,we get

\frac{a}{a+b}=\frac{c}{26}

c=\frac{26a}{a+b}

Thus, the length of the segment between triangle legs is \frac{26a}{a+b}

7 0
4 years ago
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
I will give branliest to whoever answers this correctly.
Korvikt [17]

Answer: i think it is 357

Step-by-step explanation:

6 0
4 years ago
Read 2 more answers
Solve log3(x + 1) =log6 (5 - x) by graphing.
frozen [14]

Answer: 1 & 4

1.25

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Please help with this. Thank you very much.
    6·1 answer
  • Find the difference.<br> (-9ab-a+9) - (-ab+1)
    12·2 answers
  • 29.990 plus 6.5% tax
    5·2 answers
  • Please help the grading cycle ends today!!
    12·1 answer
  • The average test scores for a particular test in algebra was 84 with a standard deviation of 5. What percentage of the students
    13·1 answer
  • How do I graphy y = 2/3x - 1​
    10·2 answers
  • What ratio is proportional to 18/21
    7·1 answer
  • Order from least to greatest -2, 5, 1, 0, -3
    13·2 answers
  • Plaz..mmnj k,mnmnm 1
    7·1 answer
  • 1)An average American human lives about 78.74 years. A survey gave an average time spent going to the bathroom to be 102 minutes
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!