Answer:
In Labrador dogs, black coat is dominant to chocolate, normal vision is dominant to progressive retinal atrophy (PRA), and normal hip joint is dominant to hip dysplasia. All these genes assort independently. Two dogs that are heterozygous for alleles of all three genes are crossed. Using rules of probability (not a Punnett square), what is the chance that the first pup born to these dogs will be chocolate, have normal vision, and have normal hip joints?
BbVvHh x BbVvHh= BBVVHH, BbVvHh, BbVvHh, bbvvhh
Bb= black coat dominant
Vv= Normal vision dominant
Hh= Normal hip join dominant
probability of having a first born of these dogs will be chocolate, have normal vision and have normal hip joint is 0
Explanation:
As the punette square gives 3:1 phenotype having three black coat, normal vision and normal hip joint and one chocolate, progressive retina altropy and hip dysplasia
Answer:
To speed up the rate of reaction, you could increase the temperature or the concentration of the reactants.
Explanation:
Basically, the idea is to speed up the molecules' movement and to cause them to break apart or collide at greater frequency
Answer:
Oceanic crust is denser than continental crust. At a subduction zone, the oceanic crust usually sinks into the mantle beneath lighter continental crust. (Sometimes, oceanic crust may grow so old and that dense that it collapses and spontaneously forms a subduction zone, scientists think.)
Explanation:
Pyroclastic materials are classified according to their size, measured in milli meters: dust (less than 0.6 mm [0.02 inch]), ash (fragments between 0.6 and 2 mm [0.02 to 0.08 inch]), cinders (fragments between 2 and 64 mm [0.08 and 2.5 inches], also known as lapilli), blocks (angular fragments greater than 64 mm), and bombs (rounded fragments greater than 64 mm).
The fluid nature of a pyroclastic flow is maintained by the turbulence of its internal gases. Both the incandescent pyroclastic particles and the rolling clouds of dust that rise above them actively liberate more gas. The expansion of these gases accounts for the nearly frictionless character of the flow as well as its great mobility and destructive power.
Pyroclastic flow, in a volcanic eruption, a fluidized mixture of hot rock fragments, hot gases, and entrapped air that moves at high speed in thick, gray-to-black, turbulent clouds that hug the ground. The temperature of the volcanic gases can reach about 600 to 700 °C (1,100 to 1,300 °F). The velocity of a flow often exceeds 100 km (60 miles) per hour and may attain speeds as great as 160 km (100 miles) per hour.
To learn more about Pyroclastic materials here
brainly.com/question/16582896
#SPJ4