Answer:
the answer is D
Step-by-step explanation:
Its okay if you still get it right but trust me its right.
The y-in is -6
The x- in is -1 and -6
The vertex is (-3.5,-6.25)
The axis is -3.5
4/7 the question is relative
The difference of the expression
is ![\frac{2x^5(x + 3) - 3x^5}{x(x - 3)(x + 3)}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E5%28x%20%2B%203%29%20-%203x%5E5%7D%7Bx%28x%20-%203%29%28x%20%2B%203%29%7D)
<h3>How to determine the difference?</h3>
The expression is given as:
![\frac{2x^5}{x^2 - 3x} - \frac{3x^5}{x^3 - 9x}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E5%7D%7Bx%5E2%20-%203x%7D%20-%20%5Cfrac%7B3x%5E5%7D%7Bx%5E3%20-%209x%7D)
Factor the denominators of the expressions:
![\frac{2x^5}{x(x - 3)} - \frac{3x^5}{x(x^2 - 9)}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E5%7D%7Bx%28x%20-%203%29%7D%20-%20%5Cfrac%7B3x%5E5%7D%7Bx%28x%5E2%20-%209%29%7D)
Apply the difference of two squares to x² - 9
![\frac{2x^5}{x(x - 3)} - \frac{3x^5}{x(x - 3)(x + 3)}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E5%7D%7Bx%28x%20-%203%29%7D%20-%20%5Cfrac%7B3x%5E5%7D%7Bx%28x%20-%203%29%28x%20%2B%203%29%7D)
Take LCM
![\frac{2x^5(x + 3) - 3x^5}{x(x - 3)(x + 3)}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E5%28x%20%2B%203%29%20-%203x%5E5%7D%7Bx%28x%20-%203%29%28x%20%2B%203%29%7D)
Hence, the difference of the expression
is ![\frac{2x^5(x + 3) - 3x^5}{x(x - 3)(x + 3)}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5E5%28x%20%2B%203%29%20-%203x%5E5%7D%7Bx%28x%20-%203%29%28x%20%2B%203%29%7D)
Read more about expressions at:
brainly.com/question/723406
#SPJ4
If i is a zero, -i is also a zero.
The way you get a complex zero is by taking the square root of a negative number. Taking the sqrt (-1) = + and - i