1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
3 years ago
7

What does X equal in this problem

Mathematics
2 answers:
serg [7]3 years ago
8 0

Answer: 98*

Alternate exterior angles are equal

3241004551 [841]3 years ago
8 0

Answer: 98 degrees

Step-by-step explanation:

98 degrees and x are alternate exterior angles.

You might be interested in
How much longer is 68.7 than 58.2 plz work it out
melomori [17]
It's simple.
you just subtract the bigger number from the smaller number.
68.7-58.2
let me know if you need further help
7 0
3 years ago
Read 2 more answers
Pleaseeeee helpppp meeeeee
Crank

Answer:

2. -18w + 6

4. 2w - 20w + 6

Step-by-step explanation:

2w +  \frac{1}{2} ( - 40w + 12) \\ 2w - 20w + 6 \\  - 18w + 6 \\

3 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Consider functions f and g
alexdok [17]

Answer:

A

Step-by-step explanation:

f(x) = \dfrac{x - 16}{x^2 + 6x - 40}

g(x) = \dfrac{1}{x + 10}

f(x) + g(x) =  \dfrac{x - 16}{x^2 + 6x - 40} + \dfrac{1}{x + 10}

f(x) + g(x) =  \dfrac{x - 16}{x^2 + 6x - 40} + \dfrac{(x - 4)}{(x + 10)(x - 4)}

f(x) + g(x) =  \dfrac{x - 16 + x - 4}{x^2 + 6x - 40}

f(x) + g(x) =  \dfrac{2x - 20}{x^2 + 6x - 40}

Answer: A

6 0
2 years ago
Multiplying binomials help please (10 points)
algol [13]
This is the answer 6x^2+15x+9
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is 75% of 200?<br> 50<br> 100<br> 150<br> 170
    8·2 answers
  • Robert is replacing sod in two square-shaped areas of his backyard. One side of the first area is 7.5 feet. One side of the othe
    10·2 answers
  • X+y=8 and x-y=2 solve the simultabeous equation <br><br>pls answers urgently​
    7·1 answer
  • please help me solve this question if i get this wrong i’ll have to go back and answer harder questions . i will give brainly
    15·2 answers
  • Ctiyj fhgj gf ,cg,j
    11·1 answer
  • Can someone help me please
    8·2 answers
  • Which system of equations has no solutions
    12·2 answers
  • 2. How many
    15·1 answer
  • Can someone please help me?
    15·1 answer
  • Colleen is attending a carnival. The price of admission to the carnival is shown. It costs $3 to play a game. Colleen has $35.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!