Answer:
347
Step-by-step explanation:
i added them all
We are given a concave spherical mirror with the following dimensions:
Radius = 60 cm; D o = 30 cm
Height = 6 cm; h o = 6 cm
First, we need to know the focal length, f, of the object (this should be given). Then we can use the following formulas for calculation:
Assume f = 10 cm
1/ f = 1 /d o + 1 / d i
1 / 10 = 1 / 30 + 1 / d i
d i = 15 cm
Then, calculate for h i:
h i / h o = - d i / d o
h i / 6 = - 15 / 30
h i = - 3 cm
Therefore, the distance of the object from the mirror is 3 centimeters. The negative sign means it is "inverted".
Answer:
Vertex form: f(x) = -10(x − 2)^2 + 3
Standard form: y = -10x^2 + 40x - 37
Step-by-step explanation:
h and k are the vertex coordinates
Substitute them in the vertex form equation:
f(x) = a(x − 2)^2 + 3
Calculate "a" by replacing "f(x)" with -7 and "x" with 1:
-7 = a(1 − 2)^2 + 3
Simplify:
-7 = a(1 − 2)^2 + 3
-7 = a(-1)^2 + 3
-7 = a + 3
-10 = a
Replace a to get the final vertex form equation:
f(x) = -10(x − 2)^2 + 3
Convert to standard form:
y = -10(x − 2)^2 + 3
Expand using binomial theorem:
y = -10(x^2 − 4x + 4) + 3
Simplify:
y = -10x^2 + 40x - 40 + 3
y = -10x^2 + 40x - 37
7 hours is 28 quarter hours. 50 is closer to 45 than 00 so it is. 75 hours. total is 28.75
Answer:
the answer is C hope this helps