1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
3 years ago
7

C) Make k the subject of the formula t = ak/ 20

Mathematics
1 answer:
stiks02 [169]3 years ago
4 0

Answer:

k=20t/a

Step-by-step explanation:

20t=ak

20t/a=k

k=20t/a

You might be interested in
Craig has a 6 ft by 6 ft square garden in his backyard. He wants to transform the garden into a rectangular shape and reduce the
Yanka [14]
X = 2
So 6 + 2 = 8
6 - 2 = 4
8 x 4 = 32

(6-x)(6+x) = 32
36 - x^2 = 32
-36. -36
-x^2 = -4
X = 2
7 0
3 years ago
The answer to number 7
slava [35]
The length of the rectangle in #7 is 18 ft
I cannot see which region is shaded so I will solve for both:
1.
the radius of one circle is 3:
A=\pir^{2}
A=(3.14)(9)
A=(28.26)
The area of the three circles is 84.78 feet squared

Area of rectangle is 108 feet squared (16*8)

108-84.78=23.22

The area of the shape around the circles is 23.22 feet squared

2:
The area of 1 circle is 28.26
The area of 3 circles is 84.78 feet squared
The area of the circles in the rectangle is 84.78 feet squared.

5 0
4 years ago
The first 4 terms and the 10th term for 3n+4
topjm [15]

Answer:

first 4 terms =7,10,13,16

10th term = 34

Step-by-step explanation:

3n+4

3(1)+4=7

3(2)+4=10

3(3)+4=13

3(4)+4=16

7,10,13,16

10th term = 3(10)+4= 34

5 0
3 years ago
The following week the company was hired for a 225 mile move. If each truck traveled at hte same speed it has the previous week
iogann1982 [59]
I added a screenshot of the original question.

Now, first we will need to calculate the speed of each truck and then get the time that each of them will take to travel the 225 miles.
The basic rule that we will use for this question is:
velocity = distance / time

Part (a): getting the velocity of each truck:
For the large truck:
We are given that the truck took 4 hours to travel 180 miles. Therefore:
velocity of large truck = 180 / 4 = 45 miles/hour

For the small truck:
We are given that the truck took 3 hours to travel the same 180 miles. Therefore:
velocity of small truck = 180 / 3 = 60 miles/hour

Part (b): getting the time required for each truck to travel 225 miles:
For the large truck:
We have the distance = 225 miles and the velocity = 45 miles/hour. Therefore:
velocity = distance / time
time = distance / velocity = 225 / 45 = 5 hours

For the small truck:
We have the distance = 225 miles and the velocity = 60 miles/hour. Therefore:
velocity = distance / time
time = distance / velocity = 225 / 60 = 3.75 hours

8 0
3 years ago
G)<br>(Sin 5A - Sin 7A - Sin 4A + Sin 8A)÷<br>(Cos 4A - Cos 5A - Cos 8A + Cos 7A)=<br>Cot 6A​
RoseWind [281]

We use a similar strategy as in your previous question. Rewrite:

sin(5<em>x</em>) = sin(6<em>x</em> - <em>x</em>) = sin(6<em>x</em>) cos(<em>x</em>) - cos(6<em>x</em>) sin(<em>x</em>)

sin(7<em>x</em>) = sin(6<em>x</em> + <em>x</em>) = sin(6<em>x</em>) cos(<em>x</em>) + cos(6<em>x</em>) sin(<em>x</em>)

→ sin(5<em>x</em>) - sin(7<em>x</em>) = -2 cos(6<em>x</em>) sin(<em>x</em>)

sin(4<em>x</em>) = sin(6<em>x</em> - 2<em>x</em>) = sin(6<em>x</em>) cos(2<em>x</em>) - cos(6<em>x</em>) sin(2<em>x</em>)

sin(8<em>x</em>) = sin(6<em>x</em> + 2<em>x</em>) = sin(6<em>x</em>) cos(2<em>x</em>) + cos(6<em>x</em>) sin(2<em>x</em>)

→   sin(8<em>x</em>) - sin(4<em>x</em>) = 2 cos(6<em>x</em>) sin(2<em>x</em>)

cos(5<em>x</em>) = cos(6<em>x</em> - <em>x</em>) = cos(6<em>x</em>) cos(<em>x</em>) + sin(6<em>x</em>) sin(<em>x</em>)

cos(7<em>x</em>) = cos(6<em>x</em> + <em>x</em>) = cos(6<em>x</em>) cos(<em>x</em>) - sin(6<em>x</em>) sin(<em>x</em>)

→   cos(7<em>x</em>) - cos(5<em>x</em>) = -2 sin(6<em>x</em>) sin(<em>x</em>)

cos(4<em>x</em>) = cos(6<em>x</em> - 2<em>x</em>) = cos(6<em>x</em>) cos(2<em>x</em>) + sin(6<em>x</em>) sin(2<em>x</em>)

cos(8<em>x</em>) = cos(6<em>x</em> + 2<em>x</em>) = cos(6<em>x</em>) cos(2<em>x</em>) - sin(6<em>x</em>) sin(2<em>x</em>)

→   cos(4<em>x</em>) - cos(8<em>x</em>) = 2 sin(6<em>x</em>) sin(2<em>x</em>)

Then

(sin(5<em>x</em>) - sin(7<em>x</em>) - sin(4<em>x</em>) + sin(8<em>x</em>)) / (cos(4<em>x</em>) - cos(5<em>x</em>) - cos(8<em>x</em>) + cos(7<em>x</em>))

= (2 cos(6<em>x</em>) sin(2<em>x</em>) - 2 cos(6<em>x</em>) sin(<em>x</em>)) / (2 sin(6<em>x</em>) sin(2<em>x</em>) - 2 sin(6<em>x</em>) sin(<em>x</em>))

= (2 cos(6<em>x</em>) (sin(2<em>x</em>) - sin(<em>x</em>))) / (2 sin(6<em>x</em>) (sin(2<em>x</em>) - sin(<em>x</em>)))

= cos(6<em>x</em>) / sin(6<em>x</em>)

= cot(6<em>x</em>)

QED

5 0
3 years ago
Other questions:
  • Use the fact that the length of an arc intercepted by an angle is proportional to the radius to find the arc length given the ci
    12·2 answers
  • When lines meet or cross at the same point they are called
    8·2 answers
  • The volume of this sphere is 500/3π cubic inches. What is the radius
    10·2 answers
  • A soap bubble has a diameter of 3 cm. what is the surface area in square cm
    14·1 answer
  • Segments AB, EF, and CD intersect at point C, and angle ACD is a right angle. Find the value of g. Please help me
    13·1 answer
  • Can someone help me there is a picture of problem
    8·1 answer
  • Round 12.5829 to the nearest hundredth
    12·2 answers
  • The quotient of 2 numbers is 20. The sum is 84. What are the 2 numbers?
    11·2 answers
  • How do you find the mean absolute deviation MAD
    9·1 answer
  • Find f(g(x)) and g(f(x)).<br> f(x)=x²-2 and g(x)=√x+1
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!