Answer:
Column A Column B
1. x² + 6x + 8 x-3,x+2
2. x³ - 7x + 6 x+1, x+2, x+3
3. x³ - 2x² - 5x + 6 x-1, x+2, x-3
Step-by-step explanation:
Column A Column B
1. x² + 6x + 8 x-3,x+2
2. x³ - 7x + 6 x+1, x+2, x+3
3. x³ - 2x² - 5x + 6 x-1, x+2, x-3
Using Factor theorem we put values of x = ±1,±2,±3 in each of the polynomials unless we get a zero.
1. x² + 6x + 8
= 1+6(1) +8= 15
1. x² + 6x + 8
4+ 12+8 = 24
1. x² + 6x + 8
(-1)² + 6(-1)+ 8
= 1-6+8= 3
1. x² + 6x + 8
(-2)² + 6(-2)+ 8
= 4-12+8= 0
1. x² + 6x + 8
(3)²+ 6(3) +8
= 9+18+8 ≠ 0
1. x² + 6x + 8
(-3)²+ 6(-3) +8
= 9-18+8 =-1
For this polynomial we have x+2= 0 or x=-2, x-3= 0 , x=3
2. x³ - 7x + 6
1-7+6= 0
2. x³ - 7x + 6
(-1)³-7(-1) +6
= 13-1≠0
2. x³ - 7x + 6
(2)³-7(2) +6
= 8-14+6= 0
2. x³ - 7x + 6
(-2)³-7(-2) +6
= -8 +14+6
2. x³ - 7x + 6
(-3)³-7(-3) +6
= -27+21+6 = 0
For this polynomial we have x+1= 0 , x+2 = 0 and x+3= 0, or x=-1,-2,-3
3. x³ - 2x² - 5x + 6
(1)³-2(1)²-5(1)+6
= 0
3. x³ - 2x² - 5x + 6
(-1)³-2(-1)²-5(-1)+6
= -1 -2 +5+6
=8
3. x³ - 2x² - 5x + 6
(2)³-2(2)²-5(2)+6
= 8-8-10+6
=-4
3. x³ - 2x² - 5x + 6
(-2)³-2(-2)²-5(-2)+6
= -8-8+10+6
=0
3. x³ - 2x² - 5x + 6
(3)³-2(3)²-5(3)+6
= 27-18-15+6
=0
3. x³ - 2x² - 5x + 6
(-3)³-2(-3)²-5(-3)+6
= -27-18+15+6
=-14
For this polynomial we have x-1= 0 ,x+2=0, x-3= 0or x=1,-2,3
Answer:
did you try
Step-by-step explanation:
Answer:
four is the right answer i think
Answer:

Step-by-step explanation:
The quadratic formula is:

The discriminant of a quadratic is just the expression under the square root, or
. This can tell us the number of solutions a quadratic has.
If the discriminant is:
- Positive = 2 real solutions
- Equal to Zero = 1 real double/repeated solution
- Negative = 0 real solutions, but 2 imaginary solutions
Our quadratic equation has a discriminant of 5, which is positive. Therefore, it has 2 real solutions.
5a^3 + 3b^4
insert the numbers into the equation.
5(4)^3 + 3(-5)^4
evaluate
5(64) + 3(625)
evaluate
320 + 1875
the solution is:
2195