Answer:
# _units = 1000
Explanation:
This exercise we can use a direct proportion rule.
If a volume of radius r = 1 is one unit, how many units can fit in a volume of radius 10?
# _units = V₁₀ / V₁
The volume of a body of radius 1 is
V₁ = 4/3 π r₁³
V₁ = 4/3π
the volume of a body of radius r = 10
V₁₀ = 4/3 π r₂³
V10 = 4/3 π 10³
the number of times this content is
#_units = 4/3 π 1000 / (4/3 π 1)
# _units = 1000
Answer:
22 N upward
Explanation:
From the question,
Applying newton's second law of motion
F = m(v-u)/t....................... Equation 1
Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact
Note: Let upward be negative and downward be positive
Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s
Substitute into equation 1
F = 0.14(-1-1.2)/0.014
F = 0.14(-2.2)/0.014
F = 10(-2.2)
F = -22 N
Note the negative sign shows that the force act upward
YES it won’t let me submit my answer
Given the relation that 1 light year = 9.46 trillion kilometers, and the distance from Epsilon Eridani to Earth which is 10.5 light years, we can solve for the distance between the star and Earth in light years by multiplying both values together. This is shown below
Dsitance (in trillion km) = 9.46 trillion km * (10.5) = 99.33 trillion kilometers
Answer:
the shortest distance to the obstruction is 0.431 m
Explanation:
We can see this system as an air column, where the plumber is open and where the water is closed, in the case when he hears the sound there is a phenomenon of resonance and superposition of waves with constructive interference.
For the lowest resonance we must have a node where the water is and a maximum where the plumber is a quarter of the wavelength
λ = ¼ L
If we are in a major resonance specifically the following resonance. We have a full wavelength plus a quarter of the wavelength
λ = 4L / 3
The general formula is
λ = 4L / n n = 1, 3, 5, 7,…
In addition the wave speed is the product of the frequency by the wavelength
v = λ f
Let's replace
v = (4L / n) f
L = v n / (4 f)
Now we can calculate the depth or length of the air column
If we have the first standing wave n = 1
L = 340 1 / (4 197)
L = 0.431 m
If it is the second resonance n = 3
L = 340 3 / (4 197)
L = 1.29 m
We can see the shortest distance to the obstruction is 0.431 m