Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
Answer:
I = Δq / t
Explanation:
The quantity of electricity i.e charge is related to current and time according to the equation equation:
Q = It
Δq = It
Where:
Q => is the quantity of electricity i.e charge
I => is the current.
t => is the time.
Thus, we can rearrange the above expression to make 'I' the subject. This is illustrated below:
Δq = It
Divide both side by t
I = Δq / t
Answer:
(a) 
(b) P = 0.816 Watt
Explanation:
(a)
The power radiated from a black body is given by Stefan Boltzman Law:

where,
P = Energy Radiated per Second = ?
σ = stefan boltzman constant = 5.67 x 10⁻⁸ W/m².K⁴
T = Absolute Temperature
So the ratio of power at 250 K to the power at 2000 K is given as:

(b)
Now, for 90% radiator blackbody at 2000 K:

<u>P = 0.816 Watt</u>
Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!
Answer:
gravitational potential energy:
GPE = m g h
kinetic energy:
KE = 1/2 m v^2