Answer:Reducing mass i.e. water
Explanation:
Frequency For given mass in glass is given by

where k =stiffness of the glass
m=mass of water in glass
from the above expression we can see that if mass is inversely Proportional to frequency
thus reducing mass we can increase frequency
Out of the following choices given, if you insert a piece of rubber between the wires, the electrons do not flow. The rubber material is an insulator. The correct answer is D.
Hello.
The formula for Power is Work divided by Time; however, we do not have our value for Work - yet.
To find for the Work inputted, we need to use its formula: Force * Distance.
Let's multiply our Force by our Distance. Remember that our Force is always measured in Newtons (N), and our Distance is measured by Meters (M).
35,000 * 25 = 875,000 J (Unit for Work is "J" or "Joules")
Now that we have the value for Work, let's apply it to our Power formula.
P = 875,000 / 45; 19,444.44~
The Power required to lift the girder is 1944.44~ W (Unit for Power is "W" or "Watts").
I hope this helps!
To solve this problem we must basically resort to the kinematic equations of movement. For which speed is defined as the distance traveled in a given time. Mathematically this can be expressed as

Where
d = Distance
t = time
For which clearing the time we will have the expression

Since we have two 'fluids' in which the sound travels at different speeds we will have that for the rock the time elapsed to feel the explosion will be:


In the case of the atmosphere -composite of air- the average speed of sound is 343m / s, therefore it will take


The total difference between the two times would be


Therefore 3.357s will pass between when they feel the explosion and when they hear it
Answer:

Explanation:
The equation for the linear impulse is as follows:

where
is impulse,
is the force, and
is the change in time.
The force, according to Newton's second law:

and since 
the force will be:

replacing in the equation for impulse:

we see that
is canceled, so

And according to the problem
,
and the mass of the passenger is
. Thus:



the magnitude of the linear impulse experienced the passenger is 