1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
5

Which Lunar Feature isn't a darker region? * Lake Ocean Highland Sea

Physics
1 answer:
mars1129 [50]3 years ago
6 0
I think it’s highland
You might be interested in
When a generator rotates a coil of wire in a magnetic field, which of the following is produced?
Sloan [31]
The correct answer is an ''electric current''.
4 0
4 years ago
The instruments carried by a spacecraft are called the
Sedaia [141]
I believe the answer is C- payload
6 0
3 years ago
Read 2 more answers
Suppose a soccer player kicks the ball from a distance 29 m toward the goal. find the initial speed of the ball if it just passe
Rudik [331]

The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by v\sin39^\circ, where v here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving

\left(0\,\dfrac{\mathrm m}{\mathrm s}\right)^2-\left(v\sin39^\circ\right)^2=2\left(-9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)(2.4\,\mathrm m)

\implies v=11\,\dfrac{\mathrm m}{\mathrm s}

6 0
3 years ago
A ball has a mass of 1.5kg and is thrown straight up with a speed of 60m/s, what is the ball’s momentum:
madam [21]

Answer:

Assumption: the air resistance on this ball is negligible. Take g = 10\; \rm m \cdot s^{-2}.

a. The momentum of the ball would be approximately 60\;\rm kg \cdot m \cdot s^{-1} two seconds after it is tossed into the air.

b. The momentum of the ball would be approximately \rm \left(-45\; \rm kg \cdot m \cdot s^{-1}\right) three seconds after it reaches the highest point (assuming that it didn't hit the ground.) This momentum is smaller than zero because it points downwards.

Explanation:

The momentum p of an object is equal its mass m times its velocity v. That is: \vec{p} = m \cdot \vec{v}.

Assume that the air resistance on this ball is negligible. If that's the case, then the ball would accelerate downwards towards the ground at a constant g \approx -10\; \rm m \cdot s^{-2}. In other words, its velocity would become approximately 10\; \rm m \cdot s^{-1} more negative every second.

The initial velocity of the ball is 60\; \rm m \cdot s^{-1}. After two seconds, its velocity would have become 60\;\rm m \cdot s^{-1} + 2\; \rm s \times \left(-10\;\rm m \cdot s^{-1}\right) = 40\; \rm m \cdot s^{-1}. The momentum of the ball at that time would be around p = m \cdot v \approx 60\; \rm kg \cdot m \cdot s^{-1}.

When the ball is at the highest point of its trajectory, the velocity of the ball would be zero. However, the ball would continue to accelerate downwards towards the ground at a constant g \approx -10\; \rm m \cdot s^{-2}. That's how the ball's velocity becomes negative.

After three more seconds, the velocity of the ball would be 0\; \rm m \cdot s^{-1} + 3\; \rm s \times \left(-10\; \rm m \cdot s^{-2}\right) = -30 \; \rm m \cdot s^{-1}. Accordingly, the ball's momentum at that moment would be p = m \cdot v \approx \left(-45\; \rm kg \cdot m \cdot s^{-1}\right).

3 0
3 years ago
Two forces, F⃗ 1F→1F_1_vec and F⃗ 2F→2F_2_vec, act at a point,F⃗ 1F→1F_1_vec has a magnitude of 8.80 NN and is directed at an an
castortr0y [4]

Answer:

  • Fx = -9.15 N
  • Fy = 1.72 N
  • F∠γ ≈ 9.31∠-10.6°

Explanation:

You apparently want the sum of forces ...

  F = 8.80∠-56° +7.00∠52.8°

Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...

  f∠α = (-f·cos(α), -f·sin(α))

This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.

  = -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))

  ≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)

  ≈ (-9.15309, 1.71982)

The resultant component forces are ...

  • Fx = -9.15 N
  • Fy = 1.72 N

Then the magnitude and direction of the resultant are

  F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)

  F∠γ ≈ 9.31∠-10.6°

4 0
3 years ago
Other questions:
  • Explain why solar energy is considered an inexhaustible source of energy
    10·1 answer
  • Can someone list two non-examples of volcano formations/eruptions?
    8·1 answer
  • Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli
    9·1 answer
  • What property makes ocean water a good conductor of electricity
    10·1 answer
  • A boat crosses a river of width 229 m in which the current has a uniform speed of 0.756 m/s. The pilot maintains a bearing (i.e.
    7·1 answer
  • UPVOTE FOR EVERY ANSWER!
    11·1 answer
  • In chemistry a 'system' is ___________________.
    5·1 answer
  • I need help answering these questions! Please!
    7·1 answer
  • A wave oscillates 5.0 times a second and has a speed of 8.0 m/s .What is the frequency of this wave?
    9·1 answer
  • Object A represents fixed negatively charged particle and Object B represents fixed. positively-charged particle. Object ( shows
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!