The block has maximum kinetic energy at the bottom of the curved incline. Since its radius is 3.0 m, this is also the block's starting height. Find the block's potential energy <em>PE</em> :
<em>PE</em> = <em>m g h</em>
<em>PE</em> = (2.0 kg) (9.8 m/s²) (3.0 m)
<em>PE</em> = 58.8 J
Energy is conserved throughout the block's descent, so that <em>PE</em> at the top of the curve is equal to kinetic energy <em>KE</em> at the bottom. Solve for the velocity <em>v</em> :
<em>PE</em> = <em>KE</em>
58.8 J = 1/2 <em>m v</em> ²
117.6 J = (2.0 kg) <em>v</em> ²
<em>v</em> = √((117.6 J) / (2.0 kg))
<em>v</em> ≈ 7.668 m/s ≈ 7.7 m/s
Answer: analog-to-digital
Explanation: Analog-to-digital converters as the name implies simply refers to components which are used to convert continuous analog signals into a discrete analog outputs so they it can be read and processed by a microprocessor. The microprocessors are unable to depict and read analog signals which could be gathered from sound, light or water wave sources. This wave sources are then sampled, processed and sorted into levels by the analog-to-digital converter before being sent to the microprocessor so that the waves can be read.
Answer:
As we need to use a nested loop in our function,hence push $ra
pop $ra
jal nested_function_label
nop is the correct option.
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building

