Answer:resultant vector R = (0, 3)
Explanation: vector A = (3, 0)
vector B =(-3, 3)
Vectors are added such that those in same directions are added together. The resultant vector R is the given by R = (3-3, 0+3)
= (0, 3)
Answer:
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions.[1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.
Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
Answer:
700 mL or 0.0007 m³
Explanation:
P₁ = Initial pressure = 2 atm
V₁ = Initial volume = 350 mL
P₂ = Final pressure = 1 atm
V₂ = Final volume
Here the temperature remains constant. So, Boyle's law can be applied here.
P₁V₁ = P₂V₂

So, volume of this sample of gas at standard atmospheric pressure would be 700 mL or 0.0007 m³
The energy stored in a capacitor is given by:

where
U is the energy
C is the capacitance
V is the potential difference
The capacitor in this problem has capacitance

So if we re-arrange the previous equation, we can calculate the potential V that should be applied to the capacitor to store U=1.0 J of energy on it: