Answer:
When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. For example, when energy is transferred to an Earth-object system as an object is raised, the gravitational field energy of the system increases. This energy is released as the object falls; the mechanism of this release is the gravitational force. Likewise, two magnetic and electrically charged objects interacting at a distance exert forces on each other that can transfer energy between the interacting objects.
Explanation:
Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion). ... A force is a push or pull that causes an object to move, change direction, change speed, or stop. Without a force, an object that is moving will continue to move and an object at rest will remain at rest.
Answer:
the yield of product is YP=46.835 % and the concentration of solids is
Cs = 27.33%
Explanation:
Assuming that all the solids and fats remains in the milk after the evaporation, then the mass of product mP will be
Mass of fat in 100 kg of milk = 100 kg* 0.037 = mP* 0.079
mP = 100 kg* 0.037/0.079 = 46.835 kg
then the yield YP of the product is
YP= mP / 100 kg = 46.835 kg / 100 kg = 46.835 %
YP= 46.835 %
the concentration of solids Cs is
Mass of solids in 100 kg of milk = 100 kg* 0.128 = 46.835 kg * Cs
Cs = 100 kg* 0.128 / 46.835 kg = 0.2733 = 27.33%
Cs = 27.33%
That you have thrown a ball with kinetic energy upwards at an increasing velocity rate
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)