A motorboat accelerates uniformly from a velocity of 6.5m/s
to the west to a velocity of 1.5m/s to the west. if its accelerate was 2.7m/s2
to the east ,
how far did it travel during the accelration? Give your
answer in units of kilometers per hour/sec. To find the acceleration of the car
we have to
<span>
1. First determine
the suitable formula for this word problem.
Which is a. A=vf-vi/t</span>
which will be
Given are: Vi= 6.5 m/s Vf= 1.5 m/s a= 2.7 m/sec2 t=1.85s
Solution:
<span>
x = v0t + ½at2</span>
<span>x = <span>16.645375 m </span></span>
Answer:
5.024 years
Explanation:
T1 = 1 year
r1 = 150 million km
r2 = 440 million km
let the period of asteroid orbit is T2.
Use Kepler's third law
T² ∝ r³
So,


T2 = 5.024 years
Thus, the period of the asteroid's orbit is 5.024 years.
The object is moving, so at different times, it has different displacement. I'm guessing that you probably want to know the displacement at the end of the time on the graph ... 5 seconds.
Displacement is the distance and the direction FROM (the position at the beginning) TO (the position at the end).
At the beginning ... time=0 ... the position is 1 meter.
At the end ... time=5 ... the position is zero.
The distance FROM the beginning TO the end is (zero - 1m) . That's <em>-1m </em>.
B. picking up a box off the floor