Answer:
Im not really sure but Id say weather .
Explanation:
If the maximum emf of the ac generator is 20 V and the maximum potential difference across the resistor is 16 V Then the maximum potential difference across the inductor is 4 V.
Calculation:
Step-1:
It is given that the RL circuit is connected to a 20 V ac generator. The maximum potential difference across the resistor is 16 V. It is required to find the maximum potential drop across the inductor.
Step-2:
The maximum emf of the generator is equal to the sum of the maximum potential difference across the resistor and the maximum potential difference across the inductor.
Therefore,
The maximum potential difference across the inductor + Maximum maximum potential difference across the resistor = Maximum emf of the generator
Thus,
Maximum maximum potential difference across the inductor + 16 V = 20 V
Therefore,
Maximum maximum potential difference across the inductor = 20 V - 16 V = 4 V
Learn more about potential differences across resistor and inductor here,
brainly.com/question/15715072
#SPJ4
Answer:
i do belive its C
Explanation:
i remeber this question from somewhere also it makes the most sense
The first one is the light bends sheikh is known as refraction
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer: