Answer:
Acceleration=4m/s²
Force applied =619.8N
Explanation:
Using equation of motion
V=u+at we have: u=o, v=50m/s
50= 0 + a×0.0121
a = 50/0.0121
a= 4m/s²
Neglecting resistance forces
F= ma, where a = v-u/t
F=m×(v-u)/t
F= 0.150 ×(50-0)/0.0121
F=7.5/0.0121
F= 619.8N
Answer:
a) 1.25e15 kg
b) 4.17e20 J
c) 44.55 years
Explanation:
To find the volume you need to multiply 218 km * 25 km * 250 m (be careful with units), so the volume is 1.3625e12 m^3, if you multiply this value by the density you will obtain the mass, that is 1.25e15 kg.
To find the energy needed to melt the ice, you use the latent heat, in this case, it is 3.34e5 J/kg. Now you multiply this value by the mass, so you need 4.17e20 J to melt the iceberg.
The surface area of the iceberg is 545e7 m^2, so the ice absorbs 594e9 W, one W is one J/s, so in 12 hours the iceberg absorbs 2.56e16 J, so in 365 days absorbs 9.36e18 J. Now you just divide 4.17e20 J by the amount f energy per year, and obtain 44.55 years.
Answer:
2N
Explanation:
subtract rthe two forces to see which is greater
4-2=2