Answer:
ΔE = 37.8 x 10^9 J
Explanation:
The energy required will increased the potential energy and increase the kinetic energy.
As the altitude change is fairly small compared to the earth radius, we can ASSUME that the average gravity will be a good representative
Gravity acceleration at altitude would be 9.8(6400²/8000²) = 6.272 m/s²
G(avg) = (9.8 + 6.272)/2 = 8.036 m/s²
ΔPE = mG(avg)Δh = 1000(8.036)(8e6 - 6.4e6) = 12.857e9 J
The centripetal force at orbit must be equal to the gravity force
mv²/R = mg'
v²/8.0e6 = 6.272
v² = (6.272(8.0e6)) = 50.2e6 m²/s²
The maximum velocity when resting on earth at the equator is about 460 m/s.
The change in kinetic energy is
ΔKE = ½m(vf² - vi²)(1000)
ΔKE = ½(1000)(50.2e6 - 460²) = 25e9 J
Total energy increase is
25e9 + 12.857e9 = 37.8e9 J
The correct answer for this question is this one: C) 2.5s. T<span>he period and frequency of a water wave if 4.0 complete waves pass a fixed point in 10 seconds is that 2.5 s
</span>
Here are the following choices:
<span>A) 0.25s
B) 0.40s
C) 2.5s
D) 4.0s</span>
<span>Kepler found that the orbits of the planets were elliptical.
His work was so convincing that to this day, they still are. </span>
Actual displacement that he required to move
towards North
Displacement that he moved due to snow is
at 47 degree North of East
now in vector component form we can say



now the displacement that is more required to reach the destination is given as



so the magnitude of the displacement is given as


its direction is given as

so it is 5.54 km towards 5.38 degree North of West.