The work done on the car is -20 J.
Work done on the car is negative, meaning that the car actually does work on the external system.
<h3>Energy and law of conservation of energy</h3>
- Energy is the ability to do work
- the law of conservation of energy states that the total energy in a system is conserved
From the law of conservation of energy, the initial energy of the car before it moves down the road remains constant or unchanged.
- Initial energy = 100 J
- Initial energy = Final energy - work done on car
- Final Energy = Work done on car + initial energy
80J = Work done on car + 100 J
Work done on car = 80 - 100J
Work done on car = -20 J
Hence, the work done on the car is -20 J
Work done on car is negative.
Since work done on the car is negative, it means that the car actually does work on the external system. Hence, the decrease in the energy of the car.
Learn more about energy and work at: brainly.com/question/13387946
Answer:
Explanation:
Given that,
Number of extra electrons, n = 21749
We need to find the net charge on the metal ball. Let Q is the net charge.
We know that the charge on an electron is
To find the net charge if there are n number of extra electrons is :
Q = n × q
So, the net charge on the metal ball is
. Hence, this is the required solution.
Answer:
The amount of energy carried by a wave is related to the amplitude of the wave
Explanation:
A high energy wave is characterized by a high amplitude; a low energy wave is characterized by a low amplitude. The energy imparted to a pulse will only affect the amplitude of that pulse.
Hope this helped!!!
Speed is the distance traveled
time
but velocity is the change in distance
time
Answer:
c) The distance between the balls increases.
Explanation:
If you drop the balls at the same time, regardless of their masses they accelerate equally, since they will be in free fall.
However, if you drop one of the balls earlier, then that ball will gain velocity, whereas the second ball has zero initial velocity. At the time the second ball is dropped, both balls have the same acceleration but different initial velocities.
According to the below kinematics equation:

The initial velocity of the first ball will make the difference, and the first ball will travel a greater distance than the second ball. Hence, their distance increases.