The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers.
<h3>When was Einstein miracle year?</h3>
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers in a short time and became very popular.
His mindset in that year was one that challenged the orthodox explanations and sought to think outside the box.
Learn more about Albert Einstein:brainly.com/question/2964376
#SPJ1
C: Litmus Paper. Red litmus paper turns blue in acids; blue litmus paper turns red in bases
The answer is, "the speed of the current is 5 miles per hour."
To calculate the speed of the current,
let's assume speed of current = xmph. Time taken to travel from one pier to another with the current = 100/(20+x)h
But the time taken to travel from one pier to another with the current, which is given is = 4 hours. So, 4=100/(20+x) 80+4x = 100
4x = 20
x = 5 Thus, the speed of the current is 5 miles per hour.
Answer:
a) h = 593.50 m
b) h₁₁ = 103 m
c) vf = 107.91 m/s
Explanation:
a)
We will use second equation of motion to find the height:

where,
h = height = ?
vi = initial speed = 0 m/s
t = time taken = 11 s
g = 9.81 /s²
Therefore,

<u>h = 593.50 m</u>
b)
For the distance travelled in last second, we first need to find velocity at 10th second by using first equation of motion:

where,
vf = final velocity at tenth second = v₁₀ = ?
t = 10 s
vi = 0 m/s
Therefore,

Now, we use the 2nd equation of motion between 10 and 11 seconds to find the height covered during last second:

where,
h = height covered during last second = h₁₁ = ?
vi = v₁₀ = 98.1 m/s
t = 1 s
Therefore,

<u>h₁₁ = 103 m</u>
c)
Now, we use first equation of motion for complete motion:

where,
vf = final velocity at tenth second = ?
t = 11 s
vi = 0 m/s
Therefore,

<u>vf = 107.91 m/s</u>