Answer:
a) No.
b) Yes.
c) Yes.
Step-by-step explanation:
a) No.
As being without replacement, the probabilities of each color in each draw change depending on the previous draws.
This is best modeled by an hypergeometric distribution.
b) Yes.
As being with replacement, the probabilities for each color is constant.
Also, there are only two colors, so the "success", with probability p, can be associated with the color red, and the "failure", with probability (1-p), with the color blue, for example.
(With more than two colors, it should be "red" and "not red", allowing only two possibilities).
c) Yes.
The answer is binary (Yes or No) and the probabilities are constant, so it can be represented as a binomial experiment.
No it’s not a good question
Step-by-step explanation:
(a) dP/dt = kP (1 − P/L)
L is the carrying capacity (20 billion = 20,000 million).
Since P₀ is small compared to L, we can approximate the initial rate as:
(dP/dt)₀ ≈ kP₀
Using the maximum birth rate and death rate, the initial growth rate is 40 mil/year − 20 mil/year = 20 mil/year.
20 = k (6,100)
k = 1/305
dP/dt = 1/305 P (1 − (P/20,000))
(b) P(t) = 20,000 / (1 + Ce^(-t/305))
6,100 = 20,000 / (1 + C)
C = 2.279
P(t) = 20,000 / (1 + 2.279e^(-t/305))
P(10) = 20,000 / (1 + 2.279e^(-10/305))
P(10) = 6240 million
P(10) = 6.24 billion
This is less than the actual population of 6.9 billion.
(c) P(100) = 20,000 / (1 + 2.279e^(-100/305))
P(100) = 7570 million = 7.57 billion
P(600) = 20,000 / (1 + 2.279e^(-600/305))
P(600) = 15170 million = 15.17 billion