1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
7

A student had 500 of water in a water bottle . She drank 30 % of the water before soccer practice practice drank of the water mu

ch water to the nearest milliliters does the student have left in the bottle ?
Mathematics
2 answers:
Musya8 [376]3 years ago
7 0
The student has 350 milliliters of water on the water bottle after she drank 30% of it.

30%=0.30
500 × 0.30=150
500-150=350
Lana71 [14]3 years ago
6 0

Answer:

piece of cake, she got 350ml of water left

Step-by-step explanation:

lets find out what 10% of 500 is, which is 50

so 20% is 100

we do 10% 3 times, so 50x3=150

500-150=350

it is 350

You might be interested in
2. Given a directed line segment with endpoints A(3, 2) and B(6, 11), what is the point that
KATRIN_1 [288]

Answer:

The point of division is (5 , 8)

Step-by-step explanation:

* Lets explain how to solve the problem

- If point (x , y) divides the line whose endpoints are (x_{1},y_{1})

 and (x_{2},y_{2}) at ratio m_{1}:m_{2} , then

 x=\frac{x_{1}m_{2}+x_{2}m_{1}}{m_{1}+m_{2}} and

 y=\frac{y_{1}m_{2}+y_{2}m_{1}}{m_{1}+m_{2}}

* Lets solve the problem

- The directed line segment with endpoints A (3 , 2) and B (6 , 11)

- There is a point divides AB two-thirds from A to B

∵ The coordinates of the endpoints of the directed line segments

   are A = (3 , 2) and B = (6 , 11)

∴ (x_{1},y_{1}) is (3 , 2)

∴ (x_{2},y_{2}) is (6 , 11)

∵ Point (x , y) divides AB two-thirds from A to B

- That means the distance from A to the point (x , y) is 2/3 from

  the distance of the line AB, and the distance from the point (x , y)

  to point B is 1/3 from the distance of the line AB

∴ m_{1}:m_{2} = 2 : 1

∵ x=\frac{(3)(1)+(6)(2)}{2+1}=\frac{3+12}{3}=\frac{15}{3}=5

∴ The x-coordinate of the point of division is 5

∵ y=\frac{(2)(1)+(11)(2)}{2+1}=\frac{2+22}{3}=\frac{24}{3}=8

∴ The y-coordinate of the point of division is 8

∴ The point of division is (5 , 8)

6 0
3 years ago
How much greater is 28.95 than 14.25?
patriot [66]
28.95 is 14.7 greater than 14.25
7 0
3 years ago
Graph the solution to the inequality on the number line : q < 69.5
liq [111]

Answer:

hopes this helps :]

7 0
3 years ago
Read 2 more answers
Solve for equation √-5p=√24-p
blsea [12.9K]

Answer:


Step-by-step explanation:

Algebra Calculator | Latest | Discuss | About | Help | Translation

25,219,829 solved | 850 online

p2-5p-24=0  

Two solutions were found :

    p = 8

    p = -3  

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "p2"   was replaced by   "p^2".  

Step by step solution :

Step  1  :

Trying to factor by splitting the middle term

1.1     Factoring  p2-5p-24  

The first term is,  p2  its coefficient is  1 .

The middle term is,  -5p  its coefficient is  -5 .

The last term, "the constant", is  -24  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -24 = -24  

Step-2 : Find two factors of  -24  whose sum equals the coefficient of the middle term, which is   -5 .

      -24     +     1     =     -23  

      -12     +     2     =     -10  

      -8     +     3     =     -5     That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  3  

                    p2 - 8p + 3p - 24

Step-4 : Add up the first 2 terms, pulling out like factors :

                   p • (p-8)

             Add up the last 2 terms, pulling out common factors :

                   3 • (p-8)

Step-5 : Add up the four terms of step 4 :

                   (p+3)  •  (p-8)

            Which is the desired factorization

Equation at the end of step  1  :

 (p + 3) • (p - 8)  = 0  

Step  2  :

Theory - Roots of a product :

2.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

2.2      Solve  :    p+3 = 0  

Subtract  3  from both sides of the equation :  

                     p = -3

Solving a Single Variable Equation :

2.3      Solve  :    p-8 = 0  

Add  8  to both sides of the equation :  

                     p = 8

8 0
4 years ago
Lala went to the store to buy snacks for her grandmother. She bought 1.4 pounds of cashews that costs $8.90 per pound. She also
r-ruslan [8.4K]
Yes.she spent $6.79cent on cashews
3 0
4 years ago
Read 2 more answers
Other questions:
  • What is the number between 0.4 and 0.5?
    6·1 answer
  • formula one race cars reach speeds of approximately 100 meters Per second. what is the speed in meters per minute?
    12·2 answers
  • A car travels 350 miles on 20 gallons of gasoline. How many gallons will be used to travel875 miles under the same conditions?
    5·2 answers
  • 8x to the 5th power (3x)
    12·1 answer
  • 4x+y=10 complete the missing value in the solution to the equation
    6·1 answer
  • Which is the better deal for frozen pizzas?: 3 for $11 or 2 for $8.50.
    13·1 answer
  • 5. Mark's brother is five years older than Mark.
    11·1 answer
  • -79=7x+3(4x-1)<br><br> If you answer this then you are officially smart
    13·2 answers
  • The price of an item has been reduced by 45%. The original price was $60. What is the price of the item now?
    5·1 answer
  • An initial amount of $40,000 increases by 8% per year. In how many years will the amount reach $60,000?​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!