Answer:
Ag⁺(aq) + I⁻(aq) → AgI(s)
Explanation:
Net ionic equation is a way to write a chemical equation in which you are listing only the species that are participating in the reaction.
In the reaction:
AgNO₃(aq) + NaI(aq) → AgI(s) + NaNO₃(aq).
The ionic equation is:
Ag⁺(aq) + NO₃⁻(aq) + Na⁺(aq) + I⁻(aq) → AgI(s) + Na⁺(aq) + NO₃⁻(aq).
Now, listing only the species that are participating in the reaction:
<h3>Ag⁺(aq) + I⁻(aq) → AgI(s)</h3>
<span>C. New substances are always produced in chemical changes, which is not the case with physical changes. For example, when you cut wood into smaller pieces you still have wood in the end. But, with a chemical change you change the substance's whole composition. For example when you add two hydrogen's to one oxygen you have water and it can't break down from that. </span><span />
there's a total of five atoms
Explanation: In IUPAC, E-Z convention is given for describing the cis - trans notation to the isomers. According to CIP rule, the groups on the doubly bonded carbon atoms are given priorities based on the the atomic masses of first connected atom.
If the highest priority groups are on the same side, it is known as Z-form and if the highest priority groups are on opposite side, it is known as E-form.
We are given (Z)-3-bromo-6-methyl-2-heptene, in this the highest priority groups are bromine on one side and methyl- group on another side.
The structure is provided in the image below.
Answer:
The correct answer is physical properties and/or phase properties.
Explanation:
Chemical properties can alter the substance (if you burn wood, it becomes ash and is no longer wood).
Reactive properties are also chemically changing the substance.
Phase properties are where the element can be in solid, liquid, or gas form so these could also be an answer.