Answer:
Kindly check explanation
Step-by-step explanation:
Given that :
Correlation Coefficient (r) = 0.989
alph=0.05
Number of observations (n) = 8
determine if there is a linear correlation between chest size and weight.
Yes, there exists a linear relationship between chest size and weight as the value of the correlation Coefficient exceeds the critical value.
What proportion of the variation in weight can be explained by the linear relationship between weight and chest size?
To determine the the proportion of variation in weight that can be explained by the linear regression line between weight and chest size, we need to obtain the Coefficient of determination(r^2) of the model.
r^2 = square of the correlation Coefficient
r^2 = 0.989^2 = 0.978121
Hence, about 0.978 (97.8%) of the variation in weight can be explained by the linear relationship between weight and chest size.
There is 3937.01 inches in 100 meters.
There is 39.3701 inches in 1 meter
multiply that by 100 and you get your answer
Hope This Helps
Answer:
Volume l^3 ,where l is the side of cube
11/3^3=1331/27
=49.29cm^3
El área de un cuadrado es igual a 8 veces la medida de su lado. ¿Cuánto mide por lado el cuadrado ?
El Area de un Cuadrado es : A = L²
L² = 8 x L -------------> L² / L = 8 ----------> L = 8
Cada lado mide 8 unidades.
2) El triple del área de un cuadrado menos seis veces la medida de su lado es igual a cero ¿Cuánto mide por lado el cuadrado?
El Area de un Cuadrado es : A = L²
(3 x L²) - 6 L = 0
Factorizando : 3L ( L - 2 ) = 0 --------> L = 0 ; L = 2
Cada lado mide 2 unidades.
Answer:
Let the income and saving rs7x and respectively 2x
then
2x=500
Step-by-step explanation: