Lead is heavier and more resistant. Plastic foam is light and can easily be broken
Answer:
A)
<u>4, 7, 4, 6</u>
B)
<u>12 moles</u>
Explanation:

__↑______↑
8.00 mol | 14.00 mol
________________

You can turn this into a system of variables which are solvable.
To do this, create variables for the coefficients of each compound in the reaction respectively.

Because to be balanced, the count of atoms in each element of the compound correspond to the coefficient of the variable in that compound so that the count of the left (reactant) side is set equal to the right (product) side.
a corresponds to the coefficient of the first compound, b corresponds to the coefficient of the second compound, c corresponds to the coefficient of the third compound, and d corresponds to the coefficient of the fourth compound.
(Reactant = Product)
Reactant: 1a [N] Product: 1c.
Reactant: 3a [H] Product: 2d.
Reactant: 2b [O] Product: 2c + 1d.
Thus the system is:
1a = 1c
3a = 2d
2b = 2c + 1d.
Then just use the substitution methods to solve.
Answer:
True.
Explanation:
This process is known as chemiosmosis in which there is a movement of ions across semipermeable membrane. Hydrogen ions moves from region of its higher concentration to the region of lower concentration. As this process belongs to the diffusion or osmosis of water molecules across cell membrane that is why known as chemiosmosis.
ATP synthase is an enzyme which function is to form ATP by using free energy generated in result of movement of hydrogen ions.
430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
<h3>What is Molarity?</h3>
- The amount of a substance in a specific volume of solution is known as its molarity (M).
- The number of moles of a solute per liter of a solution is known as molarity.
<h3>Calculation of Required amount of AgCl</h3>
Remember that mol/L is the unit of molarity (M).
We can compute the necessary number of moles of solute by multiplying the concentration by the liters of solution, according to dimensional analysis.
0.75L×4.0M=3.0mol
Then, using the periodic table's molar mass for AgCl, convert from moles to grams:
3.0mol×143.321gmol=429.963g
The final step is to round to the correct significant figure, which in this case is two: 430g.
Hence, 430 g of AgCl would be needed to make a 4.0m solution with a volume of 0.75 L.
Learn more about Molarity here:
brainly.com/question/8732513
#SPJ4
I am sorry I don't know, points are points though