The mean kinetic energy per molecule is , where is the Boltzmann constant and T is the absolute temperature.
So at 1000°C, the T = 1273.15 K, kB=1.38 × 10-23, therefore the mean kinetic energy is 2.635 × 10⁻²⁰J.
<h3><u>
What is Kinetic energy ?</u></h3>
The energy an item has as a result of motion is known as kinetic energy.
A force must be applied to an item in order to accelerate it. We must put forth effort in order to apply a force. After the job is finished, energy is transferred to the item, which then moves at a new, constant speed. Kinetic energy is the type of energy that is transmitted and is dependent on the mass and speed attained.
Kinetic energy may be converted into other types of energy and transported between things. A flying squirrel may run into a chipmunk that is standing still, for instance. Some of the squirrel's original kinetic energy may have been transferred to the chipmunk or changed into another kind of energy after the impact.
To view more about kinetic energy, refer to;
brainly.com/question/2972267
#SPJ4
Answer:
To gain stability
Explanation:
If the outermost shell is not completely filled with electrons, the element has one of the three options: gaining electrons, losing electrons or sharing electrons. By gaining or losing electrons, ionic compounds are produced. Sharing of electrons results in the formation of covalent compounds.
Answer:
The ratio of f at the higher temperature to f at the lower temperature is 5.356
Explanation:
Given;
activation energy, Ea = 185 kJ/mol = 185,000 J/mol
final temperature, T₂ = 525 K
initial temperature, T₁ = 505 k
Apply Arrhenius equation;
![Log(\frac{f_2}{f_1} ) = \frac{E_a}{2.303 \times R} [\frac{1}{T_1} -\frac{1}{T_2} ]](https://tex.z-dn.net/?f=Log%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7BE_a%7D%7B2.303%20%5Ctimes%20R%7D%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%5Cfrac%7B1%7D%7BT_2%7D%20%5D)
Where;
is the ratio of f at the higher temperature to f at the lower temperature
R is gas constant = 8.314 J/mole.K
![Log(\frac{f_2}{f_1} ) = \frac{E_a}{2.303 \times R} [\frac{1}{T_1} -\frac{1}{T_2} ]\\\\Log(\frac{f_2}{f_1} ) = \frac{185,000}{2.303 \times 8.314} [\frac{1}{505} -\frac{1}{525} ]\\\\Log(\frac{f_2}{f_1} ) = 0.7289\\\\\frac{f_2}{f_1} = 10^{0.7289}\\\\\frac{f_2}{f_1} = 5.356](https://tex.z-dn.net/?f=Log%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7BE_a%7D%7B2.303%20%5Ctimes%20R%7D%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%5Cfrac%7B1%7D%7BT_2%7D%20%5D%5C%5C%5C%5CLog%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7B185%2C000%7D%7B2.303%20%5Ctimes%208.314%7D%20%5B%5Cfrac%7B1%7D%7B505%7D%20-%5Cfrac%7B1%7D%7B525%7D%20%5D%5C%5C%5C%5CLog%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%200.7289%5C%5C%5C%5C%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%20%3D%2010%5E%7B0.7289%7D%5C%5C%5C%5C%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%20%3D%205.356)
Therefore, the ratio of f at the higher temperature to f at the lower temperature is 5.356
I don't know if this will help but here are some chemical properties of acids and bases :
taste: sour (vinegar)
base: bitter (baking soda)
smell: frequently burns nose
base: usually no smell (except NH3)
texture: sticky
base: slippery
reactivity: frequently react with metals to form H2
base: react with many oils and fats
Answer:
2.23M
Explanation:
Molarity of a solution is calculated thus
Molarity = number of moles (n) ÷ volume (V)
According to this question, 4.11g of Zn metal was used in order to reach a volume of EDTA solution of 28.26 mL.
28.26mL = 28.26/1000
= 0.02826L
Using mole = mass/molar mass to calculate no. of moles of Zn
Mole = 4.11/65.4
mole = 0.0628mol
Molarity = 0.0628 ÷ 0.02826
Molarity = 2.23M
The concentration of the EDTA solution used is 2.23M