Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
Answer:
Step-by-step explanation:
The first step will be to make y the subject of the formula, by multiplying both sides of the equation by -1.
y = x - 1
This is simply the equation of a line with a slope of 1 and y-intercept (0,-1)
To determine the three points that solve the equation, we can let x be;
0, 1, 2
When x =0, y = 0-1 = -1
When x = 1, y = 1-1 = 0
When x = 2, y = 2 - 1 = 1
Therefore, we have the following three sets of points that can be used to graph the given linear equation;
(0, -1)
(1, 0)
(2, 1)
Find the attached for the graph
Not sure what the measure of ____ is, can you specify?
If f(x) = 6x , then f(2) = 6(2) or f(2) = 12... simply substitute the argument in for the variable in your expression on the right.
Steps to solve:
(-5q^2 + 6q + 7) - (-q^2 + 4q)
~Distribute the left side
-5q^2 + 6q + 7 + q^2 - 4q
~Combine like terms
-4q^2 + 2q + 7
Best of Luck!