Not of Bernoulli type, but still linear.

There's no need to find an integrating factor, since the left hand side already represents a derivative:
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=(1+x^2)\dfrac{\mathrm dy}{\mathrm dx}+2xy](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D%281%2Bx%5E2%29%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%2B2xy)
So, you have
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=4x^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D4x%5E2)
and integrating both sides with respect to

yields


They are equal.
2/6 = 1/3
1 * 2 = 2
-------
3 * 2 = 6
do you see it?
answer:
mean: 15.8
median: 12
mode: no mode
range: 27
step-by-step explanation:
- first know how to find each of the above and what they are
- mean = (avg) add all the numbers, then divide by the number of numbers
- median = the middle number from increasing order
- mode = the one that repeats the most
- range = the difference between the largest and smallest number
8, 35, 10, 12, 14
<u>mean</u>
8 + 35 + 10 + 12 + 14 = 79
79 / 5 = 15.8
<u>median</u>
- put them from smallest to largest
8, 10, 12, 14, 35
- 12 is the median OR the middle number
<u>mode</u>
- no number repeat, so no mode
<u>range</u>
35 - 8 = 27
The formula for the nth term of a geometric sequence:

a₁ - the first term, r - the common ratio
![54, a_2, a_3, 128 \\ \\ a_1=54 \\ a_4=128 \\ \\ a_n=a_1 \times r^{n-1} \\ a_4=a_1 \times r^3 \\ 128=54 \times r^3 \\ \frac{128}{54}=r^3 \\ \frac{128 \div 2}{54 \div 2}=r^3 \\ \frac{64}{27}=r^3 \\ \sqrt[3]{\frac{64}{27}}=\sqrt[3]{r^3} \\ \frac{\sqrt[3]{64}}{\sqrt[3]{27}}=r \\ r=\frac{4}{3}](https://tex.z-dn.net/?f=54%2C%20a_2%2C%20a_3%2C%20128%20%5C%5C%20%5C%5C%0Aa_1%3D54%20%5C%5C%0Aa_4%3D128%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_4%3Da_1%20%5Ctimes%20r%5E3%20%5C%5C%0A128%3D54%20%5Ctimes%20r%5E3%20%5C%5C%0A%5Cfrac%7B128%7D%7B54%7D%3Dr%5E3%20%5C%5C%20%5Cfrac%7B128%20%5Cdiv%202%7D%7B54%20%5Cdiv%202%7D%3Dr%5E3%20%5C%5C%0A%5Cfrac%7B64%7D%7B27%7D%3Dr%5E3%20%5C%5C%0A%5Csqrt%5B3%5D%7B%5Cfrac%7B64%7D%7B27%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E3%7D%20%5C%5C%0A%5Cfrac%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B%5Csqrt%5B3%5D%7B27%7D%7D%3Dr%20%5C%5C%0Ar%3D%5Cfrac%7B4%7D%7B3%7D)