Answer:
x=136
Step-by-step explanation:
To find the measure of the sum of the interior angles use the formula (n-2) times 180 where n is the number of sides.
A quadrilateral has 4 sides. (4-2) times 180. 2 times 180=360
The sum of the interior angles of a quadrilateral is 360.
x+47+95+82=360
x+ 224 = 360
x= 136
Answer: this is our required factor i.e.

Explanation:
Since we have given that

As we know the identity , which says that

So, we can use this here ,

Hence this is our required factor i.e.

Answer:
-125,-626
Step-by-step explanation:
please mark brainliest
Answer:
a. L{t} = 1/s² b. L{1} = 1/s
Step-by-step explanation:
Here is the complete question
The The Laplace Transform of a function ft), which is defined for all t2 0, is denoted by Lf(t)) and is defined by the improper integral Lf))s)J" e-st . f(C)dt, as long as it converges. Laplace Transform is very useful in physics and engineering for solving certain linear ordinary differential equations. (Hint: think of s as a fixed constant) 1. Find Lft) (hint: remember integration by parts) A. None of these. B. O C. D. 1 E. F. -s2 2. Find L(1) A. 1 B. None of these. C. 1 D.-s E. 0
Solution
a. L{t}
L{t} = ∫₀⁰⁰
Integrating by parts ∫udv/dt = uv - ∫vdu/dt where u = t and dv/dt =
and v =
and du/dt = dt/dt = 1
So, ∫₀⁰⁰udv/dt = uv - ∫₀⁰⁰vdu/dt w
So, ∫₀⁰⁰
= [
]₀⁰⁰ - ∫₀⁰⁰
∫₀⁰⁰
= [
]₀⁰⁰ - ∫₀⁰⁰
= -1/s(∞exp(-∞s) - 0 × exp(-0s)) +
[
]₀⁰⁰
= -1/s[(∞exp(-∞) - 0 × exp(0)] - 1/s²[exp(-∞s) - exp(-0s)]
= -1/s[(∞ × 0 - 0 × 1] - 1/s²[exp(-∞) - exp(-0)]
= -1/s[(0 - 0] - 1/s²[0 - 1]
= -1/s[(0] - 1/s²[- 1]
= 0 + 1/s²
= 1/s²
L{t} = 1/s²
b. L{1}
L{1} = ∫₀⁰⁰
= [
]₀⁰⁰
= -1/s[exp(-∞s) - exp(-0s)]
= -1/s[exp(-∞) - exp(-0)]
= -1/s[0 - 1]
= -1/s(-1)
= 1/s
L{1} = 1/s
Jasmine rode her bike 3 miles, then she walked 2 miles to Dave's house and 2+3=5 miles home, so she walked a total of 7 miles (2+5). 7 miles she walked-3 miles she rode=4 miles more walking