Mass cannot be created nor destroyed as well.
So, energy just goes into other things.
Example: you are born. You have carbon dioxide in your body, (or star dust). When you die, your body releases that gas.
Make sense?
I hope this helps! (:
Answer:
The concentration of COF₂ at equilibrium is 0.296 M.
Explanation:
To solve this equilibrium problem we use an ICE Table. In this table, we recognize 3 stages: Initial(I), Change(C) and Equilibrium(E). In each row we record the <em>concentrations</em> or <em>changes in concentration</em> in that stage. For this reaction:
2 COF₂(g) ⇌ CO₂(g) + CF₄(g)
I 2.00 0 0
C -2x +x +x
E 2.00 - 2x x x
Then, we replace these equilibrium concentrations in the Kc expression, and solve for "x".
![Kc=8.30=\frac{[CO_{2}] \times [CF_{4}] }{[COF_{2}]^{2} } =\frac{x^{2} }{(2.00-2x)^{2} } \\8.30=(\frac{x}{2.00-2x} )^{2} \\\sqrt{8.30} =\frac{x}{2.00-2x}\\5.76-5.76x=x\\x=0.852](https://tex.z-dn.net/?f=Kc%3D8.30%3D%5Cfrac%7B%5BCO_%7B2%7D%5D%20%5Ctimes%20%5BCF_%7B4%7D%5D%20%7D%7B%5BCOF_%7B2%7D%5D%5E%7B2%7D%20%7D%20%3D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%282.00-2x%29%5E%7B2%7D%20%7D%20%5C%5C8.30%3D%28%5Cfrac%7Bx%7D%7B2.00-2x%7D%20%29%5E%7B2%7D%20%5C%5C%5Csqrt%7B8.30%7D%20%3D%5Cfrac%7Bx%7D%7B2.00-2x%7D%5C%5C5.76-5.76x%3Dx%5C%5Cx%3D0.852)
The concentration of COF₂ at equilibrium is 2.00 -2x = 2.00 - 2 × 0.852 = 0.296 M
Na3PO4 + 3 KOH = 3 NaOH + K3PO4
Answer:
Group 17, 2, 7, 7 electrons
Explanation:
Answer is: the absolute pressure of the air in the balloon is 1.015 atm (102.84 kPa).
n = 0.250 mol; amount of substance.
V = 6.23 L; volume of the balloon.
T = 35°C = 308.15 K; temperature.
R = 0.08206 L·atm/mol·K, universal gas constant.
Ideal gas law: p·V = n·R·T.
p = n·R·T / V.
p = 0.250 mol · 0.08206 L·atm/mol·K · 308.15 K / 6.23 L.
p = 1.015 atm; presure of the air.