Answer:
Noble gases are a unique set of elements in the periodic table because they don't naturally bond with other elements.
Explanation:
HAVE A GOOD DAY!
Answer:
21.16 MPa
Explanation:
Partial pressure of oxygen = 5.62 MPa
Total gas pressure = 26.78 MPa
But
Total pressure of the gas= sum of partial pressures of all the constituent gases in the system.
This implies that;
Total pressure of the system = partial pressure of nitrogen + partial pressure of oxygen
Hence partial pressure of nitrogen=
Total pressure of the system - partial pressure of oxygen
Therefore;
Partial pressure of nitrogen= 26.78 - 5.62
Partial pressure of nitrogen = 21.16 MPa
The reactants are aluminum and iron nitrate.
Answer:- 14.9 M
Solution:- Given commercial sample of ammonia is 28% by mass. Let's say we have 100 grams of the sample. Then mass of ammonia would be 28 grams.
Density of the solution is given as 0.90 grams per mL.
From the mass and density we could calculate the volume of the solution as:

= 111 mL
Let's convert the volume from mL to L as molarity is moles of solute per liter of solution.
= 0.111 L
Now, we convert grams of ammonia to moles on dividing the grams by molar mass. Molar mass of ammonia is 17 gram per mole.

= 1.65 mole
To calculate the molarity we divide the moles of ammonia by the liters of solution:

= 14.9 M
So, the molarity of the given commercial sample of ammonia is 14.9 M.
A positive cahnge of enthalpy, ΔH rxn = + 55 kJ/mol, for the forward reaction means that the reaction is endothermic, i.e. the reactants absorb energy and the products are higher in energy.
Activation energy is the difference in the energy level of the reactants and the peak in the potential energy diagram (the energy of the transition state).
For an endothermic reaction, the products will be closer in energy to the transition state than what the reactans will be; so, the activation energy of the reversed reaction is lower than the activation energy of the forward reaction.
Activation energy of reverse and forward reactions is related by:
Activation energy of reverse rxn = Activation energy of forward rxn - ΔH rxn
=> Activiation energy of reverse rxn = 102 kJ/mol - 55 kJ/mol = 47 kJ/mol
Answer: 47 kJ/mol