Answer: (A) and (D)
Options (A) and (D) represent beta decay.
Explanation:
It is very simple to find beta decay in a nuclear reaction. In beta decay , neutron breaks down into a proton and an electron. After that electron is emitted from the nucleus,while proton remains inside nucleus. The resulting daughter nuclei will have one more proton and one less neutron.
Answer: 241.6 grams of CO2
Explanation: you take 84.3 grams C5H12 and divide it by 72.15 grams of C5H12(which is the molar mass) you take that answer and calculate the mols of CO2 by multiplying the 1.168 you got before and multiply it by 5. You take the answer you get from that and multiply it by the molar mass of CO2 and get the theoretical yield and then you just plug it in. 94= (x/257.02)x100 and solve to find x which is the actual yield.
Answer:
use the equation Mass= RFM*Moles
Explanation:
use your periodic table
and create a little table
Answer:
A) The temperature at which the particles of matter are at their lowest energy points.
Explanation:
Absolute temperature refers to the lowest possible temperature. At this state, no heat energy remains in the substance; the energy of the particles are at their lowest energy points.
I believe the statement above is true. <span>A </span>carbohydrate<span> is a </span>biological molecule<span> consisting of </span>carbon<span> (C), </span>hydrogen<span> (H) and </span>oxygen<span> (O) atoms, usually with a hydrogen–oxygen </span>atom ratio of 2:1. <span>When a </span>carbohydrate<span> is broken into its component sugar molecules by </span>hydrolysis<span> (e.g. sucrose being broken down into glucose and fructose), this is termed saccharification.</span>