Let the number of large bookcases be x and number of small bookcases be y, then
Maximise P = 80x + 50y;
subkect to:
6x + 2y ≤ 24
x, y ≥ 2
The corner points are (2, 2), (2, 6), (3.333, 2)
For (2, 2): P = 80(2) + 50(2) = 160 + 100 = 260
For (2, 6): P = 80(2) + 50(6) = 160 + 300 = 460
For (3.333, 2): P = 80(3.333) + 50(2) = 266.67 + 100 = 366.67
Therefore, for maximum profit, he should produce 2 large bookcases and 6 small bookcases.
Answer:
1058.4 in^2
Step-by-step explanation:
Find the surface areas of the rectangular prism and the triangular prisms separately.
Triangular: S = (1/2)lP+B, where l is slant height, P perimeter, and B base area.
14(4)= 56 perimeter of base
13 slant height
B = 14x14 = 196
put together:
S = (1/2)(13 x 56) + 196
S = 560 in^2
Now the rectangular prism
S = 2lw + 2lh + 2wh, where l is length, h height, w width. (delete the first 2lw since they share one side/they're combined shapes.
S = 2(14x8.9) + 2(14x8.9)
S = 498.4 in^2
Add them together: 498.4 + 560 = 1058.4 in^2
Answer: x= 12/5 or 2 2/5
Step-by-step explanation: