Answer:
Step-by-step explanation:
¿Qué necesitas para encontrar la mediana o el modo medio?
Answer:
If asking for the distance, the answer would be C.
<span> tan(x)/ cos(x)-sec(x)
tanx/(cosx-1/cosx)
tanx/cos^2x-1)--------------------1-sin^2x=cos^2x
-tanx/sin^2x
-(sinx/cosx)/sin^2x
-1/sinxcosx
multiply 2/2
-2/2sinxcosx-------------sin2x=2sincosx
-2/sin2x------------------1/sinx=cosecx
-2cosec2x</span>
Answer:
x = 2 cm
y = 2 cm
A(max) = 4 cm²
Step-by-step explanation: See Annex
The right isosceles triangle has two 45° angles and the right angle.
tan 45° = 1 = x / 4 - y or x = 4 - y y = 4 - x
A(r) = x* y
Area of the rectangle as a function of x
A(x) = x * ( 4 - x ) A(x) = 4*x - x²
Tacking derivatives on both sides of the equation:
A´(x) = 4 - 2*x A´(x) = 0 4 - 2*x = 0
2*x = 4
x = 2 cm
And y = 4 - 2 = 2 cm
The rectangle of maximum area result to be a square of side 2 cm
A(max) = 2*2 = 4 cm²
To find out if A(x) has a maximum in the point x = 2
We get the second derivative
A´´(x) = -2 A´´(x) < 0 then A(x) has a maximum at x = 2
Answer:
Y
=
−
3
x
+
5 5
x
−
5
y
=
-
3
Step-by-step explanation:
the question is already substituted