Step-by-step explanation:
For no 1
<em>2</em><em>5</em><em> </em><em>-</em><em> </em><em>3x </em><em>=</em><em> </em><em>4</em><em>0</em><em> </em>
<em>-</em><em> </em><em>3x </em><em>=</em><em> </em><em>4</em><em>0</em><em> </em><em>-</em><em> </em><em>2</em><em>5</em><em> </em>
<em>-</em><em> </em><em>3x </em><em>=</em><em> </em><em>1</em><em>5</em><em> </em>
<em> </em><em>-</em><em> </em><em>x </em><em>=</em><em> </em><em>1</em><em>5</em><em> </em><em>/</em><em> </em><em>3</em>
<em>Therefore </em><em> </em><em>x </em><em>=</em><em> </em><em>-</em><em> </em><em>5</em><em> </em>
<em>Now </em><em>for </em><em>no. </em><em> </em><em>2</em>
<em>1</em><em>/</em><em>3</em><em> </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>1</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>4</em><em> </em>
<em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>1</em><em>0</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em><em> </em>
<em>x </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em><em> </em><em>+</em><em> </em><em>1</em><em>0</em>
<em>Therefore </em><em> </em><em>x </em><em>=</em><em> </em><em>-</em><em> </em><em>2</em><em> </em>
<em>Hope </em><em>it </em><em>will </em><em>help </em><em>:</em><em>)</em>
The other endpoint is (10, -8
Answer:
uhm 5?
Step-by-step explanation:
because 3 we move 1 more is 4.
and 7 we go -1 which is 6 so we have 5 in the middle so the answer is 5!
I would say that its pair 1 and 3
Answer:
is parallel to 
Step-by-step explanation:
<h3>
The complete exercise is: "Is
parallel, perpendicular or neither to 
?
"</h3><h3 />
The equation of the line in Slope-Intercept form is:

Where "m" is the slope of the line and "b" is the y-intercept.
First, in order to solve this exercise it is important to remember that, by definition:
1. The slopes of parallel lines are equal.
2. The slopes of perpendicular lines are negative reciprocal.
In this case, you have the following line given in the exercise:
You can identify that "m" and "b" are:

And the other line provided in the exercise is this one:

So, you can identify that:

As you can notice, the slopes of both lines are equal; therefore, you can conclude that those lines are parallel.