Answer: 25x^2 - 1^2
Explanation:
(5x+1) (5x-1)
(5x)^2 - 1^2
25x^2 - 1^2
Answer:
b < 2
Step-by-step explanation:
7b - 3 < 11
add 3
7b < 14
divide
b < 2
Answer:
87.5 by 70 inches
Step-by-step explanation:
No options were given. So, I will calculate the minimum width
Given
![Original\ Logo = 4.5 : 3.6](https://tex.z-dn.net/?f=Original%5C%20Logo%20%3D%204.5%20%3A%203.6)
Height = 70 in ---- of the printed logo
Required
Determine the dimension that keeps the requirement
Let x be the width of the printed logo.
So, the ratio can be represented as:
![Printed\ Logo = x : 70](https://tex.z-dn.net/?f=Printed%5C%20Logo%20%3D%20x%20%3A%2070)
Equate both ratios
![x : 70 = 4.5 : 3.6](https://tex.z-dn.net/?f=x%20%20%3A%2070%20%3D%204.5%20%3A%203.6)
As fraction
![x / 70 = 4.5 / 3.6](https://tex.z-dn.net/?f=x%20%20%2F%2070%20%3D%204.5%20%2F%203.6)
Multiply through by 70
![70 * x / 70 = 4.5 / 3.6* 70](https://tex.z-dn.net/?f=70%20%2A%20x%20%20%2F%2070%20%3D%204.5%20%2F%203.6%2A%2070)
![x = 87.5](https://tex.z-dn.net/?f=x%20%3D%2087.5)
So, one of the dimension that meets the requirement is a width of 87.5 inches
F(x)=3(16) +3/4x
=48+ 3/4(16)
=48=11.30
=59.30