The <em>instantaneous</em> rate of change of <em>g</em> with respect to <em>x</em> at <em>x = π/3</em> is <em>1/2</em>.
<h3>How to determine the instantaneous rate of change of a given function</h3>
The <em>instantaneous</em> rate of change at a given value of
can be found by concept of derivative, which is described below:

Where
is the <em>difference</em> rate.
In this question we must find an expression for the <em>instantaneous</em> rate of change of
if
and evaluate the resulting expression for
. Then, we have the following procedure below:




Now we evaluate
for
:

The <em>instantaneous</em> rate of change of <em>g</em> with respect to <em>x</em> at <em>x = π/3</em> is <em>1/2</em>. 
To learn more on rates of change, we kindly invite to check this verified question: brainly.com/question/11606037
Answer:
1. x= -3
2. x= 20
Step-by-step explanation:
sorry if this is wrong,
Answer:
Equation that represents the line passing through the point -3, -1 with a slope of 4 is

Step-by-step explanation:
Equation of line in point slope form is
-------(1)
Here

Substituting values in equation (1)

Answer:
V=25088π vu
Step-by-step explanation:
Because the curves are a function of "y" it is decided to take the axis of rotation as y
, according to the graph 1 the cutoff points of f(y)₁ and f(y)₂ are ±2
f(y)₁ = 7y²-28; f(y)₂=28-7y²
y=0; x=28-0 ⇒ x=28
x=0; 0 = 7y²-28 ⇒ 7y²=28 ⇒ y²= 28/7 =4 ⇒ y=√4 =±2
Knowing that the volume of a solid of revolution V=πR²h, where R²=(r₁-r₂) and h=dy then:
dV=π(7y²-28-(28-7y²))²dy ⇒dV=π(7y²-28-28+7y²)²dy = 4π(7y²-28)²dy
dV=4π(49y⁴-392y²+784)dy integrating on both sides
∫dV=4π∫(49y⁴-392y²+784)dy ⇒ solving ∫(49y⁴-392y²+784)dy
49∫y⁴dy-392∫y²dy+784∫dy =
V=4π(
) evaluated -2≤y≤2, or 2(0≤y≤2), also
⇒ V=25088π vu
Yo can download the App photomath and it shows you how to divide step by step long numbers