1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
12

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)A buoy is anchored to the ocean floor. A large wave approaches the b

uoy. How will the buoy move as the wave goes by?
Physics
1 answer:
dimaraw [331]3 years ago
8 0

Answer:

bounce up and down

Explanation:

Buoys are used for two main reasons, one is to let the people on land know of a big incoming wave, while the second reason is to generate electricity. When a big wave is approaching the buoy starts to bounce up and down with the strength of the smalled previous waves and then bounce very strongly up as the bigger wave passes by. This movement is combined with pistons within the buoy in order to conduct electricity.

You might be interested in
A bicyclist of mass 60kg supplies 340W of power while riding into a 5 m/s head wind. The frontal area of the cyclist and bicycle
NikAS [45]

Answer:

87.1 mph

Explanation:

We are given that

Mass,m=60 kg

Power,P=340 W

Speed,v=5 m/s

Area,A=0.344 m^2

Drag coefficient,C_d=0.88

Coefficient of rolling resistance,\mu_r=0.007

Friction force,f=\mu_rmg=0.007\times 60\times 9.8=4.1 N

Where g=9.8 m/s^2

Let speed of cyclist=v'

Drag force,F_d=\frac{1}{2}\rho_{air}AC_dv^2

Density of air,\rho_{air}=1.225 kg/m^3

F_d=\frac{1}{2}\times 1.225\times 0.344\times 0.88(5)^2=4.635N

Power,P=(F_d+f)\times v'

340=(4.1+4.635) v'=8.735v'

v'=\frac{340}{8.735}=38.9m/s

v'=87.1 mph

1 m=0.00062137 miles

1 hour=3600 s

7 0
3 years ago
A 13.4-mH inductor carries a current i = <img src="https://tex.z-dn.net/?f=I_%7Bmax%7D" id="TexFormula1" title="I_{max}" alt="I_
Digiron [165]

The voltage across an inductor ' L ' is

V = L · dI/dt .

I(t) = I(max) sin(ωt)

dI/dt = I(max) ω cos(ωt)

V = L · ω · I(max) cos(ωt)

L = 1.34 x 10⁻² H

ω = 2π · 60 = 377 /sec

I(max) = 4.80 A

V = L · ω · I(max) cos(ωt)

V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)

<em>V = 24.25 cos(377 t)</em>

V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.

6 0
4 years ago
Two parallel-plate capacitors have the same plate area. Capacitor 1 has a plate separation twice that of capacitor 2, and the qu
Luba_88 [7]

Answer:

V_1=8 V_2

Explanation:

Given that:

  • Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
  • separation distance of capacitor 2, d_2=d
  • separation distance of capacitor 1, d_1=2d
  • quantity of charge on capacitor 2, Q_2=Q
  • quantity of charge on capacitor 1, Q_1=4Q

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.

Mathematically given as:

C=\frac{k.\epsilon_0.A}{d}.....................................(1)

where:

k = relative permittivity of the dielectric material between the plates= 1 for air

\epsilon_0 = 8.85\times 10^{-12}\,F.m^{-1}

From eq. (1)

For capacitor 2:

C_2=\frac{k.\epsilon_0.A}{d}

For capacitor 1:

C_1=\frac{k.\epsilon_0.A}{2d}

C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]

We know, potential differences across a capacitor is given by:

V=\frac{Q}{C}..........................................(2)

where, Q = charge on the capacitor plates.

for capacitor 2:

V_2=\frac{Q}{\frac{k.\epsilon_0.A}{d}}

V_2=\frac{Q.d}{k.\epsilon_0.A}

& for capacitor 1:

V_1=\frac{4Q}{\frac{k.\epsilon_0.A}{2d}}

V_1=\frac{4Q\times 2d}{k.\epsilon_0.A}

V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]

V_1=8 V_2

6 0
3 years ago
Differentiate between atmospheric pressure and pressure.​
Dovator [93]

Answer: atmospheric is air by the earth and pressure is just someone or something doing it

Explanation:

8 0
3 years ago
Read 2 more answers
Calculate the kinetic energy of a 750 kg compact car moving 50 m/s.
k0ka [10]
935,500 joules because when we use the KE formula KE=1/2mv^2;
KE=1/2(750)(50)^2
KE=375(2500)
KE=935,500 Joules
Hope it helps
6 0
3 years ago
Other questions:
  • Do part b please if you have a question just text me
    5·1 answer
  • What is the mass of a falling rock if it produces a force of 147N?
    5·1 answer
  • What phase difference between two otherwise identical traveling waves, moving in the same direction along a stretched string, wi
    13·1 answer
  • I'm very confused on this home work question How did magnetism 'drive' the theory of plate tectonics?
    10·1 answer
  • 32.What is the area under the curve between 0 seconds and 2 seconds?
    15·1 answer
  • A passenger jet flies from one airport to another 1293 miles away in 2.1hours . Find average speed
    11·1 answer
  • Which of the following is NOT a characteristic of scientific knowledge? please help me
    6·2 answers
  • What is the source of all waves?
    13·2 answers
  • A 75.0 Ohm resistor uses 0.285 W of power. What is the voltage across the resistor?
    12·1 answer
  • Which force below does the most work? All three displacements are the same. The 10 N force. The 8 N force The 6 N force. They al
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!