Based off the salt levels in each water.
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
Answer:
Entropy increases
Explanation:
Entropy (S) is a measure of the degree of disorder. For a given substance - say water - across phases the following is true ...
S(ice) < S(water) << S(steam)
For a chemical process, entropy changes can be related to increasing or decreasing molar volumes of gas from reactant side of equation to product side of equation. That is ...
if molar volumes of gas increase, then entropy increases, and
if molar volumes of gas decrease, then entropy decreases.
For the reaction 2KClO₃(s) => 2KCl(s) + 3O₂(g)
molar volumes of gas => 0Vm* 0Vm 3Vm
*molar volumes (Vm) apply only to gas phase substances. Solids and liquids do not have molar volume.
Since the reaction produces 3 molar volumes of O₂(g) product vs 0 molar volumes of reactant, then the reaction is showing an increase in molar volumes of gas phase substances and its entropy is therefore increasing.
Answer:
b I beleive
Explanation:
the shape of a liquid changes based on the container it is in, but the volume stays the same
Answer:
465mL
Explanation:
Volume of a solution, V =Mass of substance, m/(Molarity of the solution of the substance, M × molar mass of the substance, M.m)
Given in the question,
M=.132M
M.m=23+35.5 = 58.5g/mol
m=3.59g
V= 3.59/(.132×58.5)
V = 0.465L
Volume in mL = volume in L × 1000
= 0.465 × 1000 = 465mL
Therefore, 465mL of a .132M aqueous solution of sodium chloride, NaCl, must be taken to obtain 3.59 grams of the salt