Answer:
Density of a quantity of matter is its mass divided by its volume. The mass of an object depends on the atomic mass of the individual atoms or molecules and the how close the they are compressed together.
Explanation:
Answers:
1. 3-ethyl-3-methylheptane; 2. 2,2,3,3-tetramethylpentane; 3. hexa-2,4-diene.
Explanation:
<em>Structure 1
</em>
- Identify and name the longest continuous chain of carbon atoms (the main chain has 7 C; ∴ base name = heptane).
- Identify and name all the substituents [a 1C substituent (methyl) and a 2C substituent (methyl).
- Number the main chain from the end closest to a substituent.
- Identify the substituents by the number of the C atom on the main chain. Use hyphens between letters and numbers (3-methyl, 3-ethyl).
- Put the names of the substituents in alphabetical order in front of the base name with no spaces (3-ethyl-3-methylheptane)
<em>Structure 2</em>
- 5C. Base name = pentane
- Four methyl groups.
- Number from the left-hand end.
- If there is more than one substituent of the same type, identify each substituent by its locating number and use a multiplying prefix to show the number of each substituent. Use commas between numbers (2,2,3,3-tetramethyl).
- The name is 2,2,3,3-tetramethylpentane.
<em>Structure 3
</em>
- Identify and name the longest continuous chain of carbon atoms that passes through as many double bonds as possible. Drop the <em>-ne</em> ending of the alkane to get the root name <em>hexa-</em>.
- (No substituents).
- Number the main chain from the end closest to a double bond.
- If there is more than one double bond use a multiplying prefix to indicate the number of double bonds (two double bonds = diene) and use the smaller of the two numbers of the C=C atoms as the double bond locators (2,4-diene)
- Put the functional group name at the end of the root name (hexa-2,4-diene).
<em>Note</em>: The name 2,4-hexadiene is <em>acceptable</em>, but the <em>Preferred IUPAC Name</em> puts the locating numbers as close as possible in front of the groups they locate.
Answer:Effect of Catalysts on the Activation Energy. Catalysts provide a new reaction pathway in which a lower Activation energy is offered. A catalyst increases the rate of a reaction by lowering the activation energy so that more reactant molecules collide with enough energy to surmount the smaller energy barrier.
Explanation:
Your answer is in this
Answer:
1 mole FeCr2/ 1 mole FeCr2O4
Explanation:
We have to write down the equation of the reaction before we can answer the question;
2C(s) + FeCr2O4(s) -------> FeCr2(s) + 2CO2(g)
By inspection of this reaction equation, we can clearly see that the mole ratio of the reactants and products is 2:1:1:2.
Specifically, the ratio of chromites to ferrochrome is 1:1
Hence;
The mole ration required to convert chromites to ferrochrome is;
1 mole FeCr2/ 1 mole FeCr2O4