1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
3 years ago
10

What is the area of the figure?

Mathematics
2 answers:
vodomira [7]3 years ago
7 0

Answer:

I am 99.9% sure it is 57 square feet.

If I am wrong sorry!

Step-by-step explanation:

Have a good rest of your day or night and good luck on your test!

<3 <3 <3

zalisa [80]3 years ago
3 0

Answer: 57 ft²

Step-by-step explanation:

Find the areas of the two individual rectangles and then add that up to find the area of the figure:

Rectangle A:                                                             Rectangle B:

= Length * Width                                                       = 11.5 * 3

= 7.5 * 3                                                                     = 34.5ft²

= 22.5 ft²

Area of figure:

= 22.5 + 34.5

= 57 ft²

You might be interested in
4 times 24 in disruptive property
Nataly [62]

Step-by-step explanation:

You got it right! Great job!

3 0
3 years ago
A Right Triangle (ABC) has sides measuring 3 inches and 4 inches. The hypotenuse is 5 inches. A similar right triangle (A'B'C')
fenix001 [56]

Answer:

The length of hypotenuse is 12.5

Step-by-step explanation:

First 7.5 x 7.5 = 56.25

Then 10 x 10 = 100

Add them together 56.25 + 100 = 156.25

Then square root 156.25 and you get 12.5

8 0
3 years ago
Read 2 more answers
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
The average height of two forwards
Gelneren [198K]

Answer:

the other 2 guards must be 6 feet 3 inches

Step-by-step explanation:

\frac{3(6.8)+2x}{5} =6.6

5 0
3 years ago
Which values of a, b, and c correctly represent the answer in simplest form? 3 and one-half divided by 2 and one-fourth = a Star
sasho [114]

Answer:

(A) a=1,b=5,c=9

Step-by-step explanation:

We want to simplify 3\frac{1}{2} \div 2\frac{1}{4} for values of a, b and c which satisfies: a\dfrac{b}{c}

3\dfrac{1}{2} \div 2\dfrac{1}{4}\\\text{Changing each fraction to improper fraction}\\=\dfrac{7}{2}\div \dfrac{9}{4}\\\text{Next, we change the division sign to multiplication by taking reciprocal of the second fraction}\\=\dfrac{7}{2}X \frac{4}{9}\\=\dfrac{7X4}{2X9}\\=\dfrac{28}{18}\\Converting our result to mixed fraction

\dfrac{28}{18}=1\dfrac{10}{18}=1\dfrac{5}{9}\\a=1,b=5,c=9

4 0
3 years ago
Read 2 more answers
Other questions:
  • 27 as a mixed number
    15·1 answer
  • Hanna puts $4,383 in a savings account with an annual interest rate of 5.2 percent for 3 years. Into which variable should she s
    11·1 answer
  • Slope = 0.4, y-intercept = (0, -3)
    6·1 answer
  • 18 is 0.75% of what number?
    13·1 answer
  • How do I multiply fractions by whole numbers
    15·2 answers
  • How do I mark bran list
    8·2 answers
  • Two workers tied a 50 foot cable to the top of a pole they were going to cut down. The cable reached 40 feet from the base of th
    7·1 answer
  • Will give crown will post one more
    12·2 answers
  • Nine eighteenths plus one third
    10·2 answers
  • A company sells a dried fruit mixture for $5 per pound. To make the mixture, banana chips that cost
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!