The answer is A) <span>The death rate begins to fall, but birth rates remain high for a time.</span>
To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
I think its inductance. If its not then I think its none of the above
Answer:
Part(a): The value of the spring constant is
.
Part(b): The work done by the variable force that stretches the collagen is
.
Explanation:
Part(a):
If '
' be the force constant and if due the application of a force '
' on the collagen '
' be it's increase in length, then from Hook's law

Also, Young's modulus of a material is given by

where '
' is the area of the material and '
' is the length.
Comparing equation (
) and (
) we can write

Here, we have to consider only the circular surface of the collagen as force is applied only perpendicular to this surface.
Substituting the given values in equation (
), we have

Part(b):
We know the amount of work done (
) on the collagen is stored as a potential energy (
) within it. Now, the amount of work done by the variable force that stretches the collagen can be written as

Substituting all the values, we can write

Answer:
Mass, m = 4 kg
Explanation:
<u>Given the following data;</u>
Energy = 3.6 * 10^17 Joules
We know that the speed of light is equal to 3 * 10⁸ m/s.
To find the mass of the substance;
The theory of special relativity by Albert Einstein gave birth to one of the most famous equation in science.
The equation illustrates, energy equals mass multiplied by the square of the speed of light.
Mathematically, the theory of special relativity is given by the formula;

Where;
- E is the energy possessed by a substance.
- m is the mass.
- c is the speed of light.
Substituting into the formula, we have;



Mass, m = 4 kg